【題目】已知橢圓
:
(
),點(diǎn)
是
的左頂點(diǎn),點(diǎn)
為
上一點(diǎn),離心率
.
(1)求橢圓
的方程;
(2)設(shè)過(guò)點(diǎn)
的直線
與
的另一個(gè)交點(diǎn)為
(異于點(diǎn)
),是否存在直線
,使得以
為直徑的圓經(jīng)過(guò)點(diǎn)
,若存在,求出直線
的方程;若不存在,說(shuō)明理由.
【答案】(1)
;(2)存在,![]()
【解析】
(1)把點(diǎn)
代入橢圓C的方程,再結(jié)合離心率,可得a,b,c的關(guān)系,可得橢圓的方程;
(2)設(shè)出直線
的方程,代入橢圓,運(yùn)用韋達(dá)定理可求得點(diǎn)
的坐標(biāo),再由
,可求得直線的方程,要注意檢驗(yàn)直線是否和橢圓有兩個(gè)交點(diǎn).
(1)由題可得
∴
,所以橢圓
的方程![]()
(2)由題知
,設(shè)
,直線
的斜率存在設(shè)為
,
則
與橢圓
聯(lián)立得![]()
,
,∴
,
,∴![]()
若以
為直徑的圓經(jīng)過(guò)點(diǎn)
,
則
,∴
,
化簡(jiǎn)得
,∴
,解得
或![]()
因?yàn)?/span>
與
不重合,所以
舍.
所以直線
的方程為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)試討論
的單調(diào)性;
(2)當(dāng)函數(shù)
有三個(gè)不同的零點(diǎn)時(shí),
的取值范圍恰好是
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】本小題滿分13分)
工作人員需進(jìn)入核電站完成某項(xiàng)具有高輻射危險(xiǎn)的任務(wù),每次只派一個(gè)人進(jìn)去,且每個(gè)人只派一次,工作時(shí)間不超過(guò)10分鐘,如果有一個(gè)人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個(gè)人.現(xiàn)在一共只有甲、乙、丙三個(gè)人可派,他們各自能完成任務(wù)的概率分別![]()
,假設(shè)
互不相等,且假定各人能否完成任務(wù)的事件相互獨(dú)立.
(1)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率.若改變?nèi)齻(gè)人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?
(2)若按某指定順序派人,這三個(gè)人各自能完成任務(wù)的概率依次為
,其中
是
的一個(gè)排列,求所需派出人員數(shù)目
的分布列和均值(數(shù)字期望)
;
(3)假定
,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)字期望)達(dá)到最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),設(shè)
,
為
的兩個(gè)不同極值點(diǎn),證明:
;
(2)設(shè)
,
為
的兩個(gè)不同零點(diǎn),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查“雙11”消費(fèi)活動(dòng)情況,某校統(tǒng)計(jì)小組分別走訪了
、
兩個(gè)小區(qū)各20戶家庭,他們當(dāng)日的消費(fèi)額按
,
,
,
,
,
,
分組,分別用頻率分布直方圖與莖葉圖統(tǒng)計(jì)如下(單位:元):
![]()
![]()
(1)分別計(jì)算兩個(gè)小區(qū)這20戶家庭當(dāng)日消費(fèi)額在
的頻率,并補(bǔ)全頻率分布直方圖;
(2)分別從兩個(gè)小區(qū)隨機(jī)選取1戶家庭,求這兩戶家庭當(dāng)日消費(fèi)額在
的戶數(shù)為1時(shí)的概率(頻率當(dāng)作概率使用);
(3)運(yùn)用所學(xué)統(tǒng)計(jì)知識(shí)分析比較兩個(gè)小區(qū)的當(dāng)日網(wǎng)購(gòu)消費(fèi)水平.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的定義域?yàn)?/span>
,部分對(duì)應(yīng)值如下表:
|
| 0 | 4 | 5 |
| 1 | 2 | 2 | 1 |
的導(dǎo)函數(shù)
的圖象如圖所示,關(guān)于
的命題正確的是( )
![]()
A.函數(shù)
是周期函數(shù)
B.函數(shù)
在
上是減函數(shù)
C.函數(shù)
的零點(diǎn)個(gè)數(shù)可能為0,1,2,3,4
D.當(dāng)
時(shí),函數(shù)
有 4個(gè)零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)
為點(diǎn)
在平面
上的正投影,則記
.如圖,在棱長(zhǎng)為1的正方體
中,記平面
為
,平面
為
,點(diǎn)
是線段
上一動(dòng)點(diǎn),
.給出下列四個(gè)結(jié)論:
![]()
①
為
的重心;
②
;
③當(dāng)
時(shí),
平面
;
④當(dāng)三棱錐
的體積最大時(shí),三棱錐
外接球的表面積為
.
其中,所有正確結(jié)論的序號(hào)是________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
,t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求直角坐標(biāo)系下直線
與曲線
的普通方程;
(2)設(shè)直線
與曲線
交于點(diǎn)
、
(二者可重合),交
軸于
,若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的左焦點(diǎn)為
,
是橢圓上關(guān)于原點(diǎn)
對(duì)稱的兩個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)
的坐標(biāo)為
時(shí),
的周長(zhǎng)恰為
.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)
作直線
交橢圓于
兩點(diǎn),且
,求
面積的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com