【題目】如圖1,等腰梯形ABCD中,
,
,
,O為BE中點(diǎn),F為BC中點(diǎn).將
沿BE折起到
的位置,如圖2.
(1)證明:
平面
;
(2)若平面
平面BCDE,求點(diǎn)F到平面
的距離.
【答案】(1)證明見(jiàn)解析;(2)
.
【解析】
(1)先證
,接著證
,根據(jù)已知條件得
,即可得結(jié)論;
(2)點(diǎn)F到平面
的距離轉(zhuǎn)化為點(diǎn)B到平面
的距離的一半,取
的中點(diǎn)記為H,證明
平面
,求出
,即可得結(jié)論.
(1)
,∴
,即
,
∵
,∴![]()
O為BE中點(diǎn),F為BC中點(diǎn).∴
,∴![]()
∵
,O為BE中點(diǎn),∴
,∴![]()
而
,∴
平面
.
![]()
(2)
∴點(diǎn)F到平面AEC的距離即為點(diǎn)O到平面
的距離,
即點(diǎn)B到平面
的距離的一半.
取
的中點(diǎn)記為H,連結(jié)BH,則![]()
∵平面
平面BCDE,且交線為BE,
由(1)知
,
∴
平面
,∴
,
又![]()
∴
平面
,
,
∴B到平面
的距離為
,
∴點(diǎn)F到平面
的距離為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為評(píng)估兩套促銷活動(dòng)方案(方案1運(yùn)作費(fèi)用為5元/件;方案2的運(yùn)作費(fèi)用為2元件),在某地區(qū)部分營(yíng)銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn)(每個(gè)試點(diǎn)網(wǎng)點(diǎn)只采用一種促銷活動(dòng)方案),運(yùn)作一年后,對(duì)比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.
![]()
(1)請(qǐng)根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動(dòng)方案(不必說(shuō)明理由);
(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動(dòng)運(yùn)作費(fèi)用),為制定本年度該地區(qū)的產(chǎn)品銷售價(jià)格,統(tǒng)計(jì)上一年度的8組售價(jià)
(單位:元/件,整數(shù))和銷量
(單位:件)
如下表所示:
售價(jià) | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
銷量 | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①請(qǐng)根據(jù)下列數(shù)據(jù)計(jì)算相應(yīng)的相關(guān)指數(shù)
,并根據(jù)計(jì)算結(jié)果,選擇合適的回歸模型進(jìn)行擬合;
②根據(jù)所選回歸模型,分析售價(jià)
定為多少時(shí)?利潤(rùn)
可以達(dá)到最大.
|
|
| |
| 52446.95 | 13142 | 122.89 |
| 124650 | ||
(附:相關(guān)指數(shù)
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).
(1)若
,求曲線
與直線
的兩個(gè)交點(diǎn)之間的距離;
(2)若曲線
上的點(diǎn)到直線
距離的最大值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b∈R,若x≥0時(shí)恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,則ab等于 _________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
.
(1)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(2)求函數(shù)
的極值;
(3)若函數(shù)
有兩個(gè)零點(diǎn),求a的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,且存在不同的實(shí)數(shù)x1,x2,x3,使得f(x1)=f(x2)=f(x3),則x1x2x3的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解本學(xué)期學(xué)生參加公益勞動(dòng)的情況,某校從初高中學(xué)生中抽取100名學(xué)生,收集了他們參加公益勞動(dòng)時(shí)間(單位:小時(shí))的數(shù)據(jù),繪制圖表的一部分如表.
![]()
(1)從男生中隨機(jī)抽取一人,抽到的男生參加公益勞動(dòng)時(shí)間在
的概率:
(2)從參加公益勞動(dòng)時(shí)間
的學(xué)生中抽取3人進(jìn)行面談,記
為抽到高中的人數(shù),求
的分布列;
(3)當(dāng)
時(shí),高中生和初中生相比,那學(xué)段學(xué)生平均參加公益勞動(dòng)時(shí)間較長(zhǎng).(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,四邊形
是直角梯形,
,
,
底面
,
,
,
是
的中點(diǎn).
![]()
(1)求證:平面
平面
;
(2)若二面角
的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列
的前
項(xiàng)和為
,
,
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)數(shù)列
滿足:
對(duì)于任意
,都有
成立.
①求數(shù)列
的通項(xiàng)公式;
②設(shè)數(shù)列
,問(wèn):數(shù)列
中是否存在三項(xiàng),使得它們構(gòu)成等差數(shù)列?若存在,求出這三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com