【題目】設(shè)函數(shù)
,若曲線
上存在(x0 , y0),使得f(f(y0))=y0成立,則實數(shù)m的取值范圍為( )
A.[0,e2﹣e+1]
B.[0,e2+e﹣1]
C.[0,e2+e+1]
D.[0,e2﹣e﹣1]
【答案】D
【解析】解:∵﹣1≤cosx≤1,∴
的最大值為e,最小值為1,∴1≤y0≤e, 顯然f(x)=
是增函數(shù),
(i)若f(y0)>y0 , 則f(f(y0))>f(y0)>y0 , 與f(f(y0))=y0矛盾;
(ii)若f(y0)<y0 , 則f(f(y0))<f(y0)<y0 , 與f(f(y0))=y0矛盾;
∴f(y0)=y0 ,
∴y0為方程f(x)=x的解,即方程f(x)=x在[1,e]上有解,
由f(x)=x得m=x2﹣x﹣lnx,
令g(x)=x2﹣x﹣lnx,x∈[1,e],
則g′(x)=2x﹣1﹣
=
=
,
∴當(dāng)x∈[1,e]時,g′(x)≥0,
∴g(x)在[1,e]上單調(diào)遞增,
∴gmin(x)=g(1)=0,gmax(x)=g(e)=e2﹣e﹣1,
∴0≤m≤e2﹣e﹣1.
故選D.
求出y0的范圍,證明f(y0)=y0 , 得出f(x)=x在[1,e]上有解,再分離參數(shù),利用函數(shù)單調(diào)性求出m的范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M是滿足下列性質(zhì)的函數(shù)
的全體:在定義域內(nèi)存在
使得
成立。
(1)函數(shù)
是否屬于集合M?請說明理由;
(2)函數(shù)
M,求a的取值范圍;
(3)設(shè)函數(shù)
,證明:函數(shù)
M。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點
在正視圖上的對應(yīng)點為
,圓柱表面上的點
在左視圖上的對應(yīng)點為
,則在此圓柱側(cè)面上,從
到
的路徑中,最短路徑的長度為( )
![]()
A.
B.
C.
D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:![]()
1
證明直線l經(jīng)過定點并求此點的坐標(biāo);
2
若直線l不經(jīng)過第四象限,求k的取值范圍;
3
若直線l交x軸負半軸于點A,交y軸正半軸于點B,O為坐標(biāo)原點,設(shè)
的面積為S,求S的最小值及此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體
中,底面
為正方形,四邊形
是矩形,平面
平面
.
![]()
(1)求證:平面
平面
;
(2)若過直線
的一個平面與線段
和
分別相交于點
和
(點
與點
均不重合),求證:
;
(3)判斷線段
上是否存在一點
,使得平面
平面
?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱臺ABC﹣FED中,△DEF與△ABC分別是棱長為1與2的正三角形,平面ABC⊥平面BCDE,四邊形BCDE為直角梯形,BC⊥CD,CD=1,N為CE中點,
. ![]()
(Ⅰ)λ為何值時,MN∥平面ABC?
(Ⅱ)在(Ⅰ)的條件下,求直線AN與平面BMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC邊上的高所在直線的方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0.若點B的坐標(biāo)為(1,2),求點A和點C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
的頂點
,
邊上的中線
所在的直線方程為
,
邊上的高
所在直線的方程為
.
(
)求
的頂點
、
的坐標(biāo).
(
)若圓
經(jīng)過不同的三點
、
、
,且斜率為
的直線與圓
相切于點
,求圓
的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com