【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系,已知直線
的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
,![]()
(l)設(shè)
為參數(shù),若
,求直線
的參數(shù)方程;
(2)已知直線
與曲線
交于
,
設(shè)
,且
,求實(shí)數(shù)
的值.
【答案】(1)
(
為參數(shù));(2)1
【解析】
(1)由直線
的極坐標(biāo)方程為
,求得
,進(jìn)而由
,代入上式得
,得到直線的參數(shù)方程;
(2)根據(jù)極坐標(biāo)與直角坐標(biāo)的互化,求得
,將直線
的參數(shù)方程與
的直角坐標(biāo)方程聯(lián)立,利用根據(jù)與系數(shù)的關(guān)系,列出方程,即可求解.
(1)直線
的極坐標(biāo)方程為
即
,
因?yàn)?/span>
為參數(shù),若
,代入上式得
,
所以直線
的參數(shù)方程為
(
為參數(shù))
(2)由
,得
,
由
,
代入,得
![]()
將直線
的參數(shù)方程與
的直角坐標(biāo)方程聯(lián)立,
得
.(*)
則
且
,
,
設(shè)點(diǎn)
,
分別對(duì)應(yīng)參數(shù)
,
恰為上述方程的根.
則
,
,
,
由題設(shè)得
.
則有
,得
或
.
因?yàn)?/span>
,所以![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
上一點(diǎn)
到焦點(diǎn)
的距離
.
(1)求拋物線
的方程;
(2)過點(diǎn)
引圓
的兩條切線
,切線
與拋物線
的另一交點(diǎn)分別為
,線段
中點(diǎn)的橫坐標(biāo)記為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的左、右焦點(diǎn)分別為
,
,橢圓
的長軸長與焦距之比為
,過
的直線
與
交于
,
兩點(diǎn).
(1)當(dāng)
的斜率為
時(shí),求
的面積;
(2)當(dāng)線段
的垂直平分線在
軸上的截距最小時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南北朝時(shí)期杰出的數(shù)學(xué)家祖沖之的兒子祖暅在數(shù)學(xué)上也有很多創(chuàng)造,其最著名的成就是祖暅原理:夾在兩個(gè)平行平面之間的幾何體,被平行于這兩個(gè)平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等,現(xiàn)有一個(gè)圓柱體和一個(gè)長方體,它們的底面面積相等,高也相等,若長方體的底面周長為
,圓柱體的體積為
,根據(jù)祖暅原理,可推斷圓柱體的高( )
A.有最小值
B.有最大值
C.有最小值
D.有最大值![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,把函數(shù)
的圖象向右平移
個(gè)單位,再把圖象上各點(diǎn)的橫坐標(biāo)縮小到原來的一半,縱坐標(biāo)不變,得到函數(shù)
的圖象,當(dāng)
時(shí),方程
恰有兩個(gè)不同的實(shí)根,則實(shí)數(shù)
的取值范圍為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
.
(Ⅰ)討論
的單調(diào)性;
(Ⅱ)當(dāng)
時(shí),證明:
;
(Ⅲ)求證:對(duì)任意正整數(shù)
,都有
(其中
為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為中心,以坐標(biāo)軸為對(duì)稱軸的橢圓C經(jīng)過點(diǎn)M(2,1),N(
,-
).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)經(jīng)過點(diǎn)M作傾斜角互補(bǔ)的兩條直線,分別與橢圓C相交于異于M點(diǎn)的A,B兩點(diǎn),求直線AB的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,已知曲線
:
,過點(diǎn)
的直線
的參數(shù)方程為:
(
為參數(shù)),直線
與曲線
分別交于
、
兩點(diǎn).
(1)寫出曲線
的直角坐標(biāo)方程和直線
的普通方程;
(2)求線段
的長和
的積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部隊(duì)在一次軍演中要先后執(zhí)行六項(xiàng)不同的任務(wù),要求是:任務(wù)A必須排在前三項(xiàng)執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有( )
A. 36種B. 44種C. 48種D. 54種
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com