【題目】橢圓
的左、右焦點(diǎn)分別為
,右頂點(diǎn)為A,上頂點(diǎn)為B,且滿足向量
。
(1)若
,求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)
為橢圓上異于頂點(diǎn)的點(diǎn),以線段PB為直徑的圓經(jīng)過F1,問是否存在過F2的直線與該圓相切?若存在,求出其斜率;若不存在,說明理由。
【答案】(1)
;(2)存在滿足條件的直線,斜率
.
【解析】
(1)由上頂點(diǎn)為B和
,可以判斷出
為等腰直角三角形,可以得
,又右頂點(diǎn)為A,可以求出
,利用
,可以求出
,最后求出橢圓標(biāo)準(zhǔn)方程。
(2)由(1)可知
,利用
,可以得出
,橢圓方程可以表示成
,由已知線段PB為直徑的圓經(jīng)過
,設(shè)
的坐標(biāo)為
,可知
,得出一個(gè)等式,而
為橢圓上異于頂點(diǎn)的點(diǎn),又得到一個(gè)等式,通過兩個(gè)等式可以求出
的坐標(biāo),也就可以求出圓心坐標(biāo)和半徑。假設(shè)存在過F2的直線與該圓相切,通過圓心到切線等于半徑,列出等式,如果能求出,就說明存在,求不出,就說明不存在。
(1)易知
,因?yàn)?/span>
,
所以
為等腰直角三角形,
所以b=c,由
可知
,
故橢圓的標(biāo)準(zhǔn)方程為:
;
(2)由已知得
,
設(shè)橢圓的標(biāo)準(zhǔn)方程為
,
的坐標(biāo)為
,
因?yàn)?/span>
,所以
,
由題意得
,所以
,
又因?yàn)?/span>
在橢圓上,所以
,由以上兩式可得
,
因?yàn)?/span>
不是橢圓的頂點(diǎn),所以
,故
,
設(shè)圓心為
,則
,
圓的半徑![]()
假設(shè)存在過
的直線滿足題設(shè)條件,并設(shè)該直線的方程為
,
由相切可知
,所以
,
即
,解得![]()
故存在滿足條件的直線。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,D(0,2)為橢圓C短軸的一個(gè)端點(diǎn),F為橢圓C的右焦點(diǎn),線段DF的延長(zhǎng)線與橢圓C相交于點(diǎn)E,且|DF|=3|EF|.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與橢圓C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若直線OA與OB的斜率之積為-
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線
(
為參數(shù)),
.以原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(I)寫出曲線
與圓
的極坐標(biāo)方程;
(II)在極坐標(biāo)系中,已知射線
分別與曲線
及圓
相交于
,當(dāng)
時(shí),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.先把高二年級(jí)的2000名學(xué)生編號(hào):1到2000,再?gòu)木幪?hào)為1到50的學(xué)生中隨機(jī)抽取1名學(xué)生,其編號(hào)為
,然后抽取編號(hào)為
,
,
,…的學(xué)生,這種抽樣方法是分層抽樣法
B.線性回歸直線
不一定過樣本中心![]()
C.若一個(gè)回歸直線方程為
,則變量
每增加一個(gè)單位時(shí),
平均增加3個(gè)單位
D.若一組數(shù)據(jù)2,4,
,8的平均數(shù)是5,則該組數(shù)據(jù)的方差也是5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年的天貓“雙11”交易金額又創(chuàng)新高,達(dá)到2684億元,物流爆增.某機(jī)構(gòu)為了了解網(wǎng)購(gòu)者對(duì)收到快遞的滿意度進(jìn)行調(diào)查,對(duì)某市5000名網(wǎng)購(gòu)者發(fā)出滿意度調(diào)查評(píng)分表,收集并隨機(jī)抽取了200名網(wǎng)購(gòu)者的調(diào)查評(píng)分(評(píng)分在70~100分之間),其頻率分布直方圖如圖,評(píng)分在95分及以上確定為“非常滿意”.
![]()
(1)求
的值;
(2)以樣本的頻率作概率,試估計(jì)本次調(diào)查的網(wǎng)購(gòu)者中“非常滿意”的人數(shù);
(3)按分層抽樣的方法,從評(píng)分在90分及以上的網(wǎng)購(gòu)者中抽取6人,再?gòu)倪@6人中隨機(jī)地選取2人,求至少選到一個(gè)“非常滿意”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓
的左、右焦點(diǎn)分別為
,右頂點(diǎn)為A,上頂點(diǎn)為B,且滿足向量
(1)若A
,求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P為橢圓上異于頂點(diǎn)的點(diǎn),以線段PB為直徑的圓經(jīng)過F1,問是否存在過F2的直線與該圓相切?若存在,求出其斜率;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是某電器銷售公司2018年度各類電器營(yíng)業(yè)收入占比和凈利潤(rùn)占比統(tǒng)計(jì)表:
空調(diào)類 | 冰箱類 | 小家電類 | 其它類 | |
營(yíng)業(yè)收入占比 |
|
|
|
|
凈利潤(rùn)占比 |
|
|
|
|
則下列判斷中不正確的是( )
A. 該公司2018年度冰箱類電器營(yíng)銷虧損
B. 該公司2018年度小家電類電器營(yíng)業(yè)收入和凈利潤(rùn)相同
C. 該公司2018年度凈利潤(rùn)主要由空調(diào)類電器銷售提供
D. 剔除冰箱類電器銷售數(shù)據(jù)后,該公司2018年度空調(diào)類電器銷售凈利潤(rùn)占比將會(huì)降低
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形
是正方形,
平面
,
,
,
,
,
分別為
,
,
的中點(diǎn).
![]()
(1)求證:
平面
;
(2)求平面
與平面
所成銳二面角的大小;
(3)在線段
上是否存在一點(diǎn)
,使直線
與直線
所成的角為
?若存在,求出線段
的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com