【題目】若函數(shù)f(x)定義在R上的奇函數(shù),且在(﹣∞,0)上是增函數(shù),又f(2)=0,則不等式xf(x+1)<0的解集為 .
【答案】(0,1)∪(﹣3,﹣1)
【解析】解:∵函數(shù)f(x)定義在R上的奇函數(shù),且在(﹣∞,0)上是增函數(shù),又f(2)=0, ∴f(x)在(0,+∞)上是增函數(shù),且f(﹣2)=﹣f(2)=0,
∴當(dāng)x>2或﹣2<x<0時,f(x)>0,當(dāng)x<﹣2或0<x<2時,f(x)<0,(如圖)
則不等式xf(x+1)<0等價為
或
,
即
或
,
則
或
,
解得0<x<1或﹣3<x<﹣1,
故不等式的解集為(0,1)∪(﹣3,﹣1),
所以答案是:(0,1)∪(﹣3,﹣1)![]()
【考點精析】掌握奇偶性與單調(diào)性的綜合是解答本題的根本,需要知道奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
和直線
:
,橢圓的離心率
,坐標(biāo)原點到直線
的距離為
.
![]()
(Ⅰ)求橢圓的方程;
(Ⅱ)已知定點
,若直線
過點
且與橢圓相交于
兩點,試判斷是否存在直線
,使以
為直徑的圓過點
?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面是邊長為
的正方形,AA1=3,點F在棱B1B上運動. ![]()
(1)若三棱錐B1﹣A1D1F的體積為
時,求異面直線AD與D1F所成的角
(2)求異面直線AC與D1F所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一張紙沿直線l對折一次后,點A(0,4)與點B(8,0)重疊,點C(6,8)與點D(m,n)重疊.
(1)求直線l的方程;
(2)求m+n的值;
(3)直線l上是否存在一點P,使得||PB|﹣|PC||存在最大值,如果存在,請求出最大值,以及此時點P的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,
.
(1) 關(guān)于
的方程
在區(qū)間
上有解,求
的取值范圍;
(2) 當(dāng)
時,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)m,使得對于任意x∈M(MD),有(x﹣m)∈D且f(x﹣m)≤f(x),則稱f(x)為M上的m度低調(diào)函數(shù).如果定義域為R的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時,f(x)=|x﹣a2|﹣a2 , 且f(x)為R上的5度低調(diào)函數(shù),那么實數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用數(shù)學(xué)歸納法證明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═
時,由n=k的假設(shè)到證明n=k+1時,等式左邊應(yīng)添加的式子是( )
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點
為極點,以
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出
的普通方程和
的直角坐標(biāo)方程;
(2)設(shè)點
在
上,點
在
上,求
的最小值及此時
的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
為常數(shù),
,函數(shù)
,
(其中
是自然對數(shù)的底數(shù)).
(1)過坐標(biāo)原點
作曲線
的切線,設(shè)切點為
,求證:
;
(2)令
,若函數(shù)
在區(qū)間
上是單調(diào)函數(shù),求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com