【題目】在三棱錐D-ABC中,
,且
,
,M,N分別是棱BC,CD的中點(diǎn),下面結(jié)論正確的是( )
A.
B.
平面ABD
C.三棱錐A-CMN的體積的最大值為
D.AD與BC一定不垂直
【答案】ABD
【解析】
根據(jù)題意畫(huà)出三棱錐D-ABC,取
中點(diǎn)
,連接
:對(duì)于A,根據(jù)等腰三角形性質(zhì)及線面垂直判定定理可證明
平面
,從而即可判斷A;對(duì)于B,由中位線定理及線面平行判定定理即可證明;對(duì)于C,當(dāng)平面
平面
時(shí),三棱錐A-CMN的體積最大,由線段關(guān)系及三棱錐體積公式即可求解;對(duì)于D,假設(shè)
,通過(guò)線面垂直判定定理可得矛盾,從而說(shuō)明假設(shè)不成立,即可說(shuō)明原命題成立即可.
根據(jù)題意,畫(huà)出三棱錐D-ABC如下圖所示,取
中點(diǎn)
,連接
:
![]()
對(duì)于A,因?yàn)?/span>
,且
,
,
所以
為等腰直角三角形,
則
且
,
則
平面
,
所以
,即A正確;
對(duì)于B,因?yàn)?/span>M,N分別是棱BC,CD的中點(diǎn),
由中位線定理可得
,而
平面
,
平面
,
所以
平面
,即B正確;
對(duì)于C,當(dāng)平面
平面
時(shí),三棱錐A-CMN的體積最大,
則最大值為
,即C錯(cuò)誤;
對(duì)于D,假設(shè)
,由
,且
,
所以
平面
,則
,
又因?yàn)?/span>
,且
,
所以
平面
,由
平面
,則
,
由題意可知
,因而
不能成立,因而假設(shè)錯(cuò)誤,所以D正確;
綜上可知,正確的為ABD,
故選:ABD.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】垃圾分類(lèi),是指按一定規(guī)定或標(biāo)準(zhǔn)將垃圾分類(lèi)儲(chǔ)存、分類(lèi)投放和分類(lèi)搬運(yùn),從而轉(zhuǎn)變成公共資源的一系列活動(dòng)的總稱(chēng).分類(lèi)的目的是提高垃圾的資源價(jià)值和經(jīng)濟(jì)價(jià)值,力爭(zhēng)物盡其用.2019年6月25日,生活垃圾分類(lèi)制度入法.到2020年底,先行先試的46個(gè)重點(diǎn)城市,要基本建成垃圾分類(lèi)處理系統(tǒng);其他地級(jí)城市實(shí)現(xiàn)公共機(jī)構(gòu)生活垃圾分類(lèi)全覆蓋.某機(jī)構(gòu)欲組建一個(gè)有關(guān)“垃圾分類(lèi)”相關(guān)事宜的項(xiàng)目組,對(duì)各個(gè)地區(qū)“垃圾分類(lèi)”的處理模式進(jìn)行相關(guān)報(bào)道.該機(jī)構(gòu)從600名員工中進(jìn)行篩選,篩選方法:每位員工測(cè)試
,
,
三項(xiàng)工作,3項(xiàng)測(cè)試中至少2項(xiàng)測(cè)試“不合格”的員工,將被認(rèn)定為“暫定”,有且只有一項(xiàng)測(cè)試“不合格”的員工將再測(cè)試
,
兩項(xiàng),如果這兩項(xiàng)中有1項(xiàng)以上(含1項(xiàng))測(cè)試“不合格”,將也被認(rèn)定為“暫定”,每位員工測(cè)試
,
,
三項(xiàng)工作相互獨(dú)立,每一項(xiàng)測(cè)試“不合格”的概率均為
.
(1)記某位員工被認(rèn)定為“暫定”的概率為
,求
;
(2)每位員工不需要重新測(cè)試的費(fèi)用為90元,需要重新測(cè)試的總費(fèi)用為150元,除測(cè)試費(fèi)用外,其他費(fèi)用總計(jì)為1萬(wàn)元,若該機(jī)構(gòu)的預(yù)算為8萬(wàn)元,且該600名員工全部參與測(cè)試,問(wèn)上述方案是否會(huì)超過(guò)預(yù)算?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xex-alnx(無(wú)理數(shù)e=2.718…).
(1)若f(x)在(0,1)單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=-1時(shí),設(shè)g(x)=x(f(x)-xex)-x3+x2-b,若函數(shù)g(x)存在零點(diǎn),求實(shí)數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AP恒過(guò)定點(diǎn)
,且與直線
相切.
(Ⅰ)求動(dòng)圓P圓心的軌跡M的方程;
(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點(diǎn)C、D在軌跡M上,求正方形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形
中,
,
,點(diǎn)
在線段
上,
.把
沿
翻折至
的位置,
平面
,連結(jié)
,點(diǎn)
在線段
上,
,如圖2.
![]()
(1)證明:
平面
;
(2)當(dāng)三棱錐
的體積最大時(shí),求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
分別為橢圓
的左、右焦點(diǎn),
為該橢圓的一條垂直于
軸的動(dòng)弦,直線
與
軸交于點(diǎn)
,直線
與直線
的交點(diǎn)為
.
(1)證明:點(diǎn)
恒在橢圓
上.
(2)設(shè)直線
與橢圓
只有一個(gè)公共點(diǎn)
,直線
與直線
相交于點(diǎn)
,在平面內(nèi)是否存在定點(diǎn)
,使得
恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
分別為橢圓
的左、右焦點(diǎn),
為該橢圓的一條垂直于
軸的動(dòng)弦,直線
與
軸交于點(diǎn)
,直線
與直線
的交點(diǎn)為
.
(1)證明:點(diǎn)
恒在橢圓
上.
(2)設(shè)直線
與橢圓
只有一個(gè)公共點(diǎn)
,直線
與直線
相交于點(diǎn)
,在平面內(nèi)是否存在定點(diǎn)
,使得
恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+m|+|2x-1|.
(1)當(dāng)m=-1時(shí),求不等式f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含
,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分形幾何是美籍法國(guó)數(shù)學(xué)家芒德勃羅在20世紀(jì)70年代創(chuàng)立的一門(mén)數(shù)學(xué)新分支,其中的“謝爾賓斯基”圖形的作法是:先作一個(gè)正三角形,挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的每個(gè)小正三角形中又挖去一個(gè)“中心三角形”.按上述方法無(wú)限連續(xù)地作下去直到無(wú)窮,最終所得的極限圖形稱(chēng)為“謝爾賓斯基”圖形(如圖所示),按上述操作7次后,“謝爾賓斯基”圖形中的小正三角形的個(gè)數(shù)為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com