【題目】已知函數(shù)f(x)=
,若存在實數(shù)x1 , x2 , x3 , x4 滿足f(x1)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4 , 則
的取值范圍是( )
A.(20,32)
B.(9,21)
C.(8,24)
D.(15,25)
【答案】B
【解析】解:函數(shù)的圖象如圖所示,
∵f(x1)=f(x2),
∴﹣log2x1=log2x2 ,
∴l(xiāng)og2x1x2=0,
∴x1x2=1,
∵f(x3)=f(x4),
∴x3+x4=12,2<x3<x4<10
∴
=x3x4﹣(x3+x4)+1=x3x4﹣11,
∵2<x3<x4<10
∴
的取值范圍是(9,21).
故選:B.![]()
【考點精析】關于本題考查的函數(shù)的零點與方程根的關系,需要了解二次函數(shù)的零點:(1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點;(2)△=0,方程 有兩相等實根(二重根),二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點;(3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】命題p:任意兩個等邊三角形都是相似的.
①它的否定是_________________________________________________________;
②否命題是_____________________________________________________________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在幾何體
中,平面
平面
,四邊形
為菱形,且
,
,
∥
,
為
中點.
(Ⅰ)求證:
∥平面
;
(Ⅱ)求直線
與平面
所成角的正弦值;
(Ⅲ)在棱
上是否存在點
,使
? 若存在,求
的值;若不存在,說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的左、右焦點分別為
,點
是橢圓
上的點,離心率為
.
(1)求橢圓
的方程;
(2)點
在橢圓上
上,若點
與點
關于原點的對稱,連接
,并延長與橢圓
的另一個交點為
,連接
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知非零向量
,
,
,
滿足
=2
﹣
,
=k
+
,給出以下結論:
①若
與
不共線,
與
共線,則k=﹣2;
②若
與
不共線,
與
共線,則k=2;
③存在實數(shù)k,使得
與
不共線,
與
共線;
④不存在實數(shù)k,使得
與
不共線,
與
共線.
其中正確結論的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知x=1是函數(shù)f(x)=
ax3-
x2+(a+1)x+5的一個極值點.
(1)求函數(shù)f(x)的解析式;
(2)若曲線y=f(x)與直線y=2x+m有三個交點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+(y﹣1)2=5,直線l:mx﹣y+1﹣m=0,且直線l與圓C交于A、B兩點.
(1)若|AB|=
,求直線l的傾斜角;
(2)若點P(1,1),滿足2
=
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等比數(shù)列{an}中,已知a1=2,a4=16
(1)求數(shù)列{an}的通項公式;
(2)若a3 , a5分別為等差數(shù)列{bn}的第3項和第5項,試求數(shù)列{bn}的通項公式及前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線
(a>0,b>0)的右準線l2與一條漸近線l交于點P,F是雙曲線的右焦點.
(1)求證:PF⊥l;
(2)若PF=3,且雙曲線的離心率e=
,求該雙曲線的方程.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com