【題目】某學校課題組為了研究學生的數學成績與學生細心程度的關系,在本校隨機調查了100名學生進行研究.研究結果表明:在數學成績及格的60名學生中有45人比較細心,另外15人比較粗心;在數學成績不及格的40名學生中有10人比較細心,另外30人比較粗心.
(1)試根據上述數據完成
列聯表;
數學成績及格 | 數學成績不及格 | 合計 | |
比較細心 | 45 | ||
比較粗心 | |||
合計 | 60 | 100 |
(2)能否在犯錯誤的概率不超過0.001的前提下認為學生的數學成績與細心程度有關系?
參考數據:獨立檢驗隨機變量
的臨界值參考表:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中![]()
科目:高中數學 來源: 題型:
【題目】某市需對某環城快速車道進行限速,為了調研該道路車速情況,于某個時段隨機對
輛車的速度進行取樣,測量的車速制成如下條形圖:
![]()
經計算:樣本的平均值
,標準差
,以頻率值作為概率的估計值.已知車速過慢與過快都被認為是需矯正速度,現規定車速小于
或車速大于
是需矯正速度.
(1)從該快速車道上所有車輛中任取
個,求該車輛是需矯正速度的概率;
(2)從樣本中任取
個車輛,求這
個車輛均是需矯正速度的概率;
(3)從該快速車道上所有車輛中任取
個,記其中是需矯正速度的個數為
,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有一張長為
,寬為
(
)的長方形鐵皮
,準備用它做成一個無蓋長方體鐵皮容器,要求材料利用率為100%,不考慮焊接處損失.如圖,在長方形
的一個角上剪下一塊邊長為
的正方形鐵皮,作為鐵皮容器的底面,用余下材料剪拼后作為鐵皮容器的側面,設長方體的高為
,體積為
.
(Ⅰ)求
關于
的函數關系式;
(Ⅱ)求該鐵皮容器體積
的最大值.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產某種產品的月固定成本為10(萬元),每生產
件,需另投入成本為
(萬元).當月產量不足30件時,
(萬元);當月產量不低于30件時,
(萬元).因設備問題,該廠月生產量不超過50件.現已知此商品每件售價為5萬元,且該廠每個月生產的商品都能當月全部銷售完.
(1)寫出月利潤
(萬元)關于月產量
(件)的函數解析式;
(2)當月產量為多少件時,該廠所獲月利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某屆奧運會上,中國隊以26金18銀26銅的成績稱金牌榜第三、獎牌榜第二,某校體育愛好者在高三 年級一班至六班進行了“本屆奧運會中國隊表現”的滿意度調查(結果只有“滿意”和“不滿意”兩種),從被調查的學生中隨機抽取了50人,具體的調查結果如下表:
![]()
(1)在高三年級全體學生中隨機抽取一名學生,由以上統計數據估計該生持滿意態度的概率;
(2)若從一班至二班的調查對象中隨機選取4人進行追蹤調查,記選中的4人中對“本屆奧運會中國隊表現”不滿意的人數為
,求隨機變量
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設人的某一特征(如眼睛的大小)是由他的一對基因所決定,以d表示顯性基因,r表示隱性基因,則具有dd基因的人為純顯性,具有rr基因的人為純隱性,具有rd基因的人為混合性,純顯性與混合性的人都顯露顯性基因決定的某一特征,孩子從父母身上各得到一個基因,假定父母都是混合性,問:
(1)1個孩子顯露顯性特征的概率是多少?
(2)“該父母生的2個孩子中至少有1個顯露顯性特征”,這種說法正確嗎?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某商品的進貨單價為1元/件,商戶甲往年以單價2元/件銷售該商品時,年銷量為1萬件.今年擬下調銷售單價以提高銷量增加收益.據估算,若今年的實際銷售單價為
元/件(
),則新增的年銷量
(萬件).
(1)寫出今年商戶甲的收益
(單位:萬元)與
的函數關系式;
(2)商戶甲今年采取降低單價提高銷量的營銷策略,是否能獲得比往年更大的收益(即比往年收益更多)?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com