【題目】某屆奧運(yùn)會上,中國隊以26金18銀26銅的成績稱金牌榜第三、獎牌榜第二,某校體育愛好者在高三 年級一班至六班進(jìn)行了“本屆奧運(yùn)會中國隊表現(xiàn)”的滿意度調(diào)查(結(jié)果只有“滿意”和“不滿意”兩種),從被調(diào)查的學(xué)生中隨機(jī)抽取了50人,具體的調(diào)查結(jié)果如下表:
![]()
(1)在高三年級全體學(xué)生中隨機(jī)抽取一名學(xué)生,由以上統(tǒng)計數(shù)據(jù)估計該生持滿意態(tài)度的概率;
(2)若從一班至二班的調(diào)查對象中隨機(jī)選取4人進(jìn)行追蹤調(diào)查,記選中的4人中對“本屆奧運(yùn)會中國隊表現(xiàn)”不滿意的人數(shù)為
,求隨機(jī)變量
的分布列及數(shù)學(xué)期望.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若曲線
在
處的切線方程為
,求
的極值;
(2)若
,是否存在
,使
的極值大于零?若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,
是邊長為
的正三角形,
平面
,且
在平面
的同側(cè),它們在
內(nèi)的正射影分別是
,且
是
,
到
的距離為
.
![]()
(1)求點(diǎn)
到平面
的距離;
(2)求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,直線
過點(diǎn)
,其傾斜角為
,以原點(diǎn)為極點(diǎn),以
正半軸為極軸建立極坐標(biāo),并使得它與直角坐標(biāo)系
有相同的長度單位,圓
的極坐標(biāo)方程為
.
(1)求直線
的參數(shù)方程和圓
的普通方程;
(2)設(shè)圓
與直線
交于點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與學(xué)生細(xì)心程度的關(guān)系,在本校隨機(jī)調(diào)查了100名學(xué)生進(jìn)行研究.研究結(jié)果表明:在數(shù)學(xué)成績及格的60名學(xué)生中有45人比較細(xì)心,另外15人比較粗心;在數(shù)學(xué)成績不及格的40名學(xué)生中有10人比較細(xì)心,另外30人比較粗心.
(1)試根據(jù)上述數(shù)據(jù)完成
列聯(lián)表;
數(shù)學(xué)成績及格 | 數(shù)學(xué)成績不及格 | 合計 | |
比較細(xì)心 | 45 | ||
比較粗心 | |||
合計 | 60 | 100 |
(2)能否在犯錯誤的概率不超過0.001的前提下認(rèn)為學(xué)生的數(shù)學(xué)成績與細(xì)心程度有關(guān)系?
參考數(shù)據(jù):獨(dú)立檢驗(yàn)隨機(jī)變量
的臨界值參考表:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
,
,
)的一系列對應(yīng)最值如表:
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)
的解析式;
(2)求函數(shù)
的單調(diào)遞增區(qū)間和對稱軸;
(3)若當(dāng)
時,方程
恰有兩個不同的解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;
方案甲:員工最多有兩次抽獎機(jī)會,每次抽獎的中獎率為
.第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進(jìn)行第二次抽獎;若正面朝上,員工則須進(jìn)行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為
,每次中獎均可獲獎金400元.
(1)求某員工選擇方案甲進(jìn)行抽獎所獲獎金
(元)的分布列;
(2)某員工選擇方案乙與選擇方案甲進(jìn)行抽獎,試比較哪個方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
的極坐標(biāo)方程為
,在以極點(diǎn)為直角坐標(biāo)原點(diǎn)
,極軸為
軸的正半軸建立的平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)).
(1)寫出直線
的普通方程與曲線
的直角坐標(biāo)方程;
(2)在平面直角坐標(biāo)系中,設(shè)曲線
經(jīng)過伸縮變換
:
得到曲線
,若
為曲線
上任意一點(diǎn),求點(diǎn)
到直線
的最小距離.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com