【題目】【2018河北保定市上學(xué)期期末調(diào)研】已知點(diǎn)
到點(diǎn)
的距離比到
軸的距離大1.
(I)求點(diǎn)
的軌跡
的方程;
(II)設(shè)直線
:
,交軌跡
于
、
兩點(diǎn),
為坐標(biāo)原點(diǎn),試在軌跡
的
部分上求一點(diǎn)
,使得
的面積最大,并求其最大值.
【答案】(I)
或
;(II)
.
【解析】試題分析:(1)求軌跡方程可直接根據(jù)題意設(shè)點(diǎn)列等式化簡(jiǎn)即可或者根據(jù)我們所學(xué)的橢圓、雙曲線、拋物線的定義取對(duì)比也行本題因?yàn)辄c(diǎn)M到點(diǎn)F(1,0) 的距離比到y(tǒng)軸的距離大1,所以點(diǎn)M到點(diǎn)F(1,0)的距離等于它到直線m:x=-1的距離由拋物線定義知道,點(diǎn)M的軌跡是以F為焦點(diǎn),m為準(zhǔn)線的拋物線或x軸負(fù)半軸;(2)根據(jù)題意先分析如何使
的面積最大,可知當(dāng)直線l的平行線與拋物線相切時(shí)△ABP的面積最大,然后根據(jù)點(diǎn)到線的距離公式求出高,弦長(zhǎng)公式求出底,即得出面積
解析:(1)因?yàn)辄c(diǎn)M到點(diǎn)F(1,0) 的距離比到y(tǒng)軸的距離大1,所以點(diǎn)M到點(diǎn)F(1,0)的距離等于它到直線m:x=-1的距離
由拋物線定義知道,點(diǎn)M的軌跡是以F為焦點(diǎn),m為準(zhǔn)線的拋物線或x軸負(fù)半軸
設(shè)軌跡C的方程為:
,
,
軌跡C方程為:
, 或
.
![]()
(2)設(shè)A(x1,y1),B(x2,y2), P(x0,y0),
直線l化成斜截式為
,當(dāng)直線l的平行線與拋物線相切時(shí)△ABP的面積最大,
由圖知P點(diǎn)在第四象限.拋物線在x軸下方的圖象解析式:
,所以
,
,解得
,
,所以P點(diǎn)坐標(biāo)
,P點(diǎn)到l的距離
, A,B兩點(diǎn)滿足方程組
化簡(jiǎn)得
.
x1,x2 為該方程的根. 所以
,
,
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線W:y2=4x與圓C:(x-1)2+y2=25交于A,B兩點(diǎn),點(diǎn)P為劣弧
上不同于A,B的一個(gè)動(dòng)點(diǎn),與x軸平行的直線PQ交拋物線W于點(diǎn)Q,則△PQC的周長(zhǎng)的取值范圍是( )
![]()
A. (10,14) B. (12,14)
C. (10,12) D. (9,11)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
是定義在
上的偶函數(shù),且對(duì)任意的
恒有
,已知當(dāng)
時(shí),
,則下列命題:
①對(duì)任意
,都有
;②函數(shù)
在
上遞減,在
上遞增;
③函數(shù)
的最大值是1,最小值是0;④當(dāng)
時(shí),
.
其中正確命題的序號(hào)有________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在(0,+∞)的單調(diào)函數(shù)f(x),對(duì)任意的x∈(0,+∞)都有f[f(x)﹣log2x]=6.若x0是方程f(x)﹣f′(x)=4的一個(gè)解,且
,則a=( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知銳角△ABC中內(nèi)角A、B、C所對(duì)邊的邊長(zhǎng)分別為a、b、c,滿足a2+b2=6abcosC,且
.
(1)求角C的值;
(2)設(shè)函數(shù)
,圖象上相鄰兩最高點(diǎn)間的距離為π,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(其中
),若
的一條對(duì)稱軸離最近的對(duì)稱中心的距離為
.
(Ⅰ)求
的單調(diào)遞增區(qū)間;
(Ⅱ)在
中角
、
、
的對(duì)邊分別是
滿足
恰是
的最大值,試判斷
的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:
的焦點(diǎn)為F,直線
與y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且
.
(1)求C的方程;
(2)過F的直線
與C相交于A,B兩點(diǎn),若AB的垂直平分線
與C相較于M,N兩點(diǎn),且A,M,B,N四點(diǎn)在同一圓上,求
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018河北保定市高三上學(xué)期期末調(diào)研】如圖,四面體
中,
、
分別
、
的中點(diǎn),
,
.
![]()
(I)求證:
平面
;
(II)求異面直線
與
所成角的余弦值的大;
(III)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax2+bx+c(a≠0)經(jīng)過點(diǎn)(﹣1,0),(0,0),(1,2).
(1)求f(x)的解析式;
(2)若數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=f(n),求{an}的通項(xiàng)公式.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com