【題目】三棱錐P﹣ABC的高為PH,若三個側(cè)面兩兩垂直,則H為△ABC的( )
A.內(nèi)心
B.外心
C.垂心
D.重心
【答案】C
【解析】解答:如圖所示,![]()
三個側(cè)面兩兩垂直,可看成正方體的一角,則AP⊥面PBC,
而BC平面PBC∴AP⊥BC而PH⊥面ABC,BC面ABC
∴PH⊥BC,又AP∩PH=P,
∴BC⊥面APH,而AH面APH
∴AH⊥BC,同理可得CH⊥AB
故H為△ABC的垂心
故選:C
分析:先畫出圖形,三個側(cè)面兩兩垂直,可看成正方體的一角,根據(jù)BC⊥面APH,而AH面APH,推出AH⊥BC,同理可推出CH⊥AB,得到H為△ABC的垂心.
【考點精析】根據(jù)題目的已知條件,利用平面與平面垂直的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x|,g(x)=﹣|x﹣4|+m.
(1)解關(guān)于x的不等式g[f(x)]+3﹣m>0;
(2)若函數(shù)f(x)的圖象恒在函數(shù)g(2x)圖象的上方,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)要求,解答下列問題。
(1)求經(jīng)過點A(3,2),B(-2,0)的直線方程;
(2)求過點P(-1,3),并且在兩軸上的截距相等的直線方程;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程選講
以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,
在直角坐標系
中,曲線
的參數(shù)方程為
(
是參數(shù),
),以原點
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線
的普通方程和曲線
的直角坐標方程;
(2)當
時,曲線
和
相交于
、
兩點,求以線段
為直徑的圓的直角坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正四棱錐P﹣ABCD中,PA=
AB,M是BC的中點,G是△PAD的重心,則在平面PAD中經(jīng)過G點且與直線PM垂直的直線有條.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,AP=1,AD=2,E為線段PD上一點,記
=λ. 當λ=
時,二面角D﹣AE﹣C的平面角的余弦值為
. ![]()
(1)求AB的長;
(2)當
時,求異面直線BP與直線CE所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,ABCD﹣A1B1C1D1是棱長為a的正方體,M、N分別是下底面的棱A1B1 , B1C1的中點,P是上底面的棱AD上的一點,AP=
,過P、M、N的平面交上底面于PQ,Q在CD上,則PQ= . ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)y=2cos(x﹣
)的圖象上所有的點的橫坐標縮短到原來的
倍(縱坐標不變),得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)的圖象( )
A.關(guān)于點(﹣
,0)對稱
B.關(guān)于點(
,0)對稱
C.關(guān)于直線x=﹣
對稱
D.關(guān)于直線x=
對稱
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com