【題目】某職稱晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示).規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失敗(滿分100分).
![]()
(1)求圖中
的值;
(2)根據(jù)已知條件完成下面
列聯(lián)表,并判斷能否有
的把握認(rèn)為“晉級(jí)成功”與性別有關(guān)?
晉級(jí)成功 | 晉級(jí)失敗 | 合計(jì) | |
男 | 16 | ||
女 | 50 | ||
合計(jì) |
(參考公式:
,其中
)
| 0.40 | 0.025 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
(3)將頻率視為概率,從本次考試80分以上的所有人員中,按分層抽樣的方式抽取5個(gè)人的樣本;現(xiàn)從5人樣本中隨機(jī)選取2人,求選取的2人恰好都來(lái)自區(qū)間
的概率.
【答案】(1)
;(2)聯(lián)表見(jiàn)解析,能;(3)![]()
【解析】
(1)由頻率和為1,列方程求出
的值;
(2)根據(jù)題意填寫(xiě),計(jì)算觀測(cè)值
,對(duì)照臨界值得出結(jié)論.
(3)根據(jù)古典概型的概率公式計(jì)算可得.
解:(1)根據(jù)頻率和為1,列方程得:
,
解得
;
(2)由頻率分布直方圖知,晉級(jí)成功的頻率為
;
填寫(xiě)列聯(lián)表如下:
晉級(jí)成功 | 晉級(jí)失敗 | 合計(jì) | |
男 | 16 | 34 | 50 |
女 | 9 | 41 | 50 |
合計(jì) | 25 | 75 | 100 |
計(jì)算觀測(cè)值![]()
,
對(duì)照臨界值得,能有
的把握認(rèn)為“晉級(jí)成功”與性別有關(guān);
(3)由分層抽樣知:從
中選4人,從
中選1人;
5人中取2人共有10種取法,4/span>人中取2人共有6種取法,所以
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
是數(shù)列
的前
項(xiàng)和,對(duì)任意
,都有
;
(1)若
,求證:數(shù)列
是等差數(shù)列,并求此時(shí)數(shù)列
的通項(xiàng)公式;
(2)若
,求證:數(shù)列
是等比數(shù)列,并求此時(shí)數(shù)列
的通項(xiàng)公式;
(3)設(shè)
,若
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)討論
的單調(diào)性.
(2)試問(wèn)是否存在
,使得
對(duì)
恒成立?若存在,求
的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生自主學(xué)習(xí)期間完成數(shù)學(xué)套卷的情況,一名教師對(duì)某班級(jí)的所有學(xué)生進(jìn)行了調(diào)查,調(diào)查結(jié)果如下表.
![]()
(1)從這班學(xué)生中任選一名男生,一名女生,求這兩名學(xué)生完成套卷數(shù)之和為4的概率?
(2)若從完成套卷數(shù)不少于4套的學(xué)生中任選4人,設(shè)選到的男學(xué)生人數(shù)為
,求隨機(jī)變量
的分布列和數(shù)學(xué)期望;
(3)試判斷男學(xué)生完成套卷數(shù)的方差
與女學(xué)生完成套卷數(shù)的方差
的大小(只需寫(xiě)出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)
,已知函數(shù)
與函數(shù)
有交點(diǎn),且交點(diǎn)橫坐標(biāo)之和不大于
,求
的取值范圍_________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系
中,曲線
的方程為
.以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求
的直角坐標(biāo)方程;
(2)若
與
有且僅有三個(gè)公共點(diǎn),求
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
,求函數(shù)
的所有零點(diǎn);
(2)若
,證明函數(shù)
不存在極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,已知定點(diǎn)
、
,動(dòng)點(diǎn)
滿足
,設(shè)點(diǎn)
的曲線為
,直線
與
交于
兩點(diǎn).![]()
(1)寫(xiě)出曲線
的方程,并指出曲線
的軌跡;
(2)當(dāng)
,求實(shí)數(shù)
的取值范圍;
(3)證明:存在直線
,滿足
,并求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)四位數(shù)的各位數(shù)字相加和為10,則稱該數(shù)為“完美四位數(shù)”,如數(shù)字“2017”.試問(wèn)用數(shù)字0,1,2,3,4,5,6,7組成的無(wú)重復(fù)數(shù)字且大于2017的“完美四位數(shù)”有( )個(gè).
A. 71B. 66C. 59D. 53
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com