已知數(shù)列
的前
項(xiàng)和
,求數(shù)列
成等差數(shù)列的充要條件.
![]()
解析試題分析:當(dāng)
時(shí),
;當(dāng)
時(shí),![]()
由于
,∴當(dāng)
時(shí),
是公差為
等差數(shù)列。
要使
是等差數(shù)列,則
.
即
是等差數(shù)列的必要條件是:
.
充分性:
當(dāng)
時(shí),
.
當(dāng)
時(shí),
;當(dāng)
時(shí),
,
顯然當(dāng)
時(shí)也滿足上式,∴![]()
∴
是等差數(shù)列.
綜上可知,數(shù)列
是等差數(shù)列的充要條件是:![]()
考點(diǎn):等差數(shù)列的判定
點(diǎn)評(píng):判定數(shù)列是等差數(shù)列一般依據(jù)等差數(shù)列的定義,判定任意相鄰兩項(xiàng)的差是否是同意常數(shù)即看
是否是同一常數(shù),若是,則數(shù)列是等差數(shù)列,若不是,則數(shù)列不是等差數(shù)列,因此先要由
求
,此時(shí)與注意分
兩種情況
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列{an}的前n項(xiàng)的和記為Sn.如果
,![]()
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Sn的最小值及其相應(yīng)的n的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)設(shè)函數(shù)
的圖像的頂點(diǎn)的縱坐標(biāo)構(gòu)成數(shù)列
,求證:
為等差數(shù)列;
(Ⅱ)設(shè)函數(shù)
的圖像的頂點(diǎn)到
軸的距離構(gòu)成數(shù)列
,求
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列
是一個(gè)等差數(shù)列,
是其前
項(xiàng)和,且
,
.
(1)求
的通項(xiàng)
;
(2)求數(shù)列
的前10項(xiàng)的和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列
滿足![]()
。
(Ⅰ)若
是等差數(shù)列,求其通項(xiàng)公式;
(Ⅱ)若
滿足
,
為
的前
項(xiàng)和,求
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)已知數(shù)列
的首項(xiàng)為
,其前
項(xiàng)和為
,且對(duì)任意正整數(shù)
有:
、
、
成等差數(shù)列.
(1)求證:數(shù)列
成等比數(shù)列;
(2)求數(shù)列
的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知數(shù)列
中,
,
,且![]()
.
(1)設(shè)
,求
是的通項(xiàng)公式;
(2)求數(shù)列
的通項(xiàng)公式;
(3)若
是
與
的等差中項(xiàng),求
的值,并證明:對(duì)任意的
,
是
與
的等差中項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)
已知
是等差數(shù)列,其中
[來(lái)]
(1)求
的通項(xiàng);
(2)數(shù)列
從哪一項(xiàng)開(kāi)始小于0;
(3)求
值。]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題12分)已知數(shù)列
是等差數(shù)列,其前n項(xiàng)和公式為
,![]()
(1)求數(shù)列
的通項(xiàng)公式和
;
(2)求
的值;
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com