【題目】設(shè)f(x)=si n
-2cos2
+1.
(1)求f(x)的最小正周期;
(2)若函數(shù)y=f(x)與y=g(x)的圖象關(guān)于直線x=1對(duì)稱(chēng),求當(dāng)x∈
時(shí),y=g(x)的最大值.
【答案】(1)f(x)=
,T=8.(2)
【解析】試題分析:(1)先根據(jù)兩角差正弦公式、二倍角余弦公式以及輔助角公式將函數(shù)化為基本三角函數(shù)形式,再根據(jù)正弦函數(shù)性質(zhì)求周期(2)根據(jù)對(duì)稱(chēng)性,利用轉(zhuǎn)移法求函數(shù)y=g(x),再根據(jù)自變量范圍,利用余弦函數(shù)性質(zhì)求最值
試題解析:(1)f(x)=sin
xcos
-cos
xsin
-cos
x=
sin
x-
cos
x=
sin
,
故f(x)的最小正周期為T(mén)=
=8.
(2)法一:
在y=g(x)的圖象上任取一點(diǎn)(x,g(x)),它關(guān)于x=1的對(duì)稱(chēng)點(diǎn)為(2-x,g(x)).
由題設(shè)條件,點(diǎn)(2-x,g(x))在y=f(x)的圖象上,從而g(x)=f(2-x)=
sin
=
sin
=
cos
,
當(dāng)0≤x≤
時(shí),
≤
x+
≤
,因此y=g(x)在區(qū)間
上的最大值為ymax=
cos
=
.
法二:
因區(qū)間
關(guān)于x=1的對(duì)稱(chēng)區(qū)間為
, 且y=g(x)與y=f(x)的圖象關(guān)于直線x=1對(duì)稱(chēng),故y=g(x)在區(qū)間
上的最大值為y=f(x)在區(qū)間
上的最大值.
由(1)知f(x)=
sin
.當(dāng)
≤x≤2時(shí),-
≤
x-
≤
.
因此y=g(x)在區(qū)間
上的最大值為ymax=
sin
=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)
且斜率為
的直線
與圓
:
交于點(diǎn)
兩點(diǎn).
(1)求
的取值范圍;
(2)請(qǐng)問(wèn)是否存在實(shí)數(shù)k使得
(其中
為坐標(biāo)原點(diǎn)),如果存在請(qǐng)求出k的值,并求
;如果不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中
.
(1)當(dāng)
時(shí),求曲線
在點(diǎn)
處的切線的斜率;
(2)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的中心為坐標(biāo)原點(diǎn),其離心率為
,橢圓
的一個(gè)焦點(diǎn)和拋物線
的焦點(diǎn)重合.
(1)求橢圓
的方程![]()
(2)過(guò)點(diǎn)
的動(dòng)直線
交橢圓
于
、
兩點(diǎn),試問(wèn):在平面上是否存在一個(gè)定點(diǎn)
,使得無(wú)論
如何轉(zhuǎn)動(dòng),以
為直徑的圓恒過(guò)點(diǎn)
,若存在,說(shuō)出點(diǎn)
的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的左右焦點(diǎn)分別為
,過(guò)
作垂直于
軸的直線
交橢圓
于
兩點(diǎn),且滿足
.
(1)求橢圓
的離心率;
(2)過(guò)
作斜率為
的直線
交
于
兩點(diǎn).
為坐標(biāo)原點(diǎn),若
的面積為
,求橢圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|ax-x2|+2b(a,b∈R).
(1)當(dāng)b=0時(shí),若不等式f(x)≤2x在x∈[0,2]上恒成立,求實(shí)數(shù)a的取值范圍;
(2)已知a為常數(shù),且函數(shù)f(x)在區(qū)間[0,2]上存在零點(diǎn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)準(zhǔn)備投入適當(dāng)?shù)膹V告費(fèi)對(duì)產(chǎn)品進(jìn)行促銷(xiāo),在一年內(nèi)預(yù)計(jì)銷(xiāo)售量Q(萬(wàn)件)與廣告費(fèi)x(萬(wàn)元)之間的函數(shù)關(guān)系為Q=
(x>1),已知生產(chǎn)該產(chǎn)品的年固定投入為3萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品另需再投入32萬(wàn)元,若每件銷(xiāo)售價(jià)為“年平均每件生產(chǎn)成本(生產(chǎn)成本不含廣告費(fèi))的150%”與“年平均每件所占廣告費(fèi)的50%”之和.
(1)試將年利潤(rùn)W(萬(wàn)元)表示為年廣告費(fèi)x(萬(wàn)元)的函數(shù);(年利潤(rùn)=銷(xiāo)售收入-成本)
(2)當(dāng)年廣告費(fèi)為多少萬(wàn)元時(shí),企業(yè)的年利潤(rùn)最大?最大年利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)甲,乙兩種產(chǎn)品均需用
兩種原料,已知生產(chǎn)1噸每種產(chǎn)品需用
原料及每天原料的可用限額如下表所示,如果生產(chǎn)1噸甲,乙產(chǎn)品可獲利潤(rùn)分別為3萬(wàn)元、4萬(wàn)元,則該企業(yè)可獲得最大利潤(rùn)為__________萬(wàn)元.
甲 | 乙 | 原料限額 | |
A(噸) | 3 | 2 | 12 |
B(噸) | 1 | 2 | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線
與橢圓
有相同的焦點(diǎn),實(shí)半軸長(zhǎng)為
.
(1)求雙曲線
的方程;
(2)若直線
與雙曲線
有兩個(gè)不同的交點(diǎn)
和
,且
(其中
為原點(diǎn)),求
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com