【題目】已知函數(shù)f(x)=
+x.
(1)判斷并證明f(x)的奇偶性;
(2)證明:函數(shù)f(x)在區(qū)間(1,+∞)上為增函數(shù);
(3)求函數(shù)f(x)在區(qū)間[1,3]的最值.
【答案】
(1)解:已知函數(shù)f(x)=
+x則函數(shù)f(x)的定義域為(﹣∞,0)∪(0,+∞)
函數(shù)為奇函數(shù)
理由:對任意的x∈{x|x≠0,都有
,故函數(shù)f(x)為定義域上的奇函數(shù)
(2)證明:對區(qū)間(1,+∞)上的任意兩個數(shù)x1、x2,且x1<x2,則
.
由于x1、x2∈(1,+∞)且x1<x2,則x1x2>1,x1x2﹣1>0,x1﹣x2<0.
從而f(x1)﹣f(x2)<0即f(x1)<f(x2),
因此函數(shù)f(x)在區(qū)間(1,+∞)上為增函數(shù)
(3)解:有(2)知,函數(shù)f(x)在區(qū)間[1,3]上為增函數(shù),故fmin(x)=f(1)=2, ![]()
【解析】(1)(2)分別利用函數(shù)的奇偶性定義和單調(diào)性定義進行判斷證明;(3)利用(2)的結(jié)論,得到函數(shù)區(qū)間上的單調(diào)性,進一步求得最值.
【考點精析】本題主要考查了函數(shù)的最值及其幾何意義和函數(shù)的奇偶性的相關(guān)知識點,需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担慌己瘮(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,且此函數(shù)圖象過點(1,5).
(1)求實數(shù)m的值;
(2)判斷f(x)奇偶性;
(3)討論函數(shù)f(x)在[2,+∞)上的單調(diào)性?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四組函數(shù)中,表示同一函數(shù)的是( )
A.f(x)=|x|,g(x)= ![]()
B.f(x)=lg x2 , g(x)=2lg x
C.f(x)=
,g(x)=x+1
D.f(x)=
?
,g(x)= ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),f′(x)是f(x)的導函數(shù),當x∈[0,1]時,0≤f(x)≤1;當x∈(0,2)且x≠1時,x(x﹣1)f′(x)<0.則方程f(x)=lg|x|根的個數(shù)為( )
A.12
B.1 6
C.18
D.20
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】長郡中學學習興趣小組通過隨機詢問某地100名高中學生在選擇座位時是否挑同桌,得到如下
列聯(lián)表:
![]()
(1)從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個容量為5的樣本,現(xiàn)從這5人中隨機選取3人做深層采訪,求這3名學生中至少有2名要挑同桌的概率;
(2)根據(jù)以上
列聯(lián)表,是否有95%以上的把握認為“性別與在選擇座位時是否挑同桌”有關(guān)?下面的臨界值表僅供參考:
![]()
(參考公式:
,其中
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中,正確的是 . (填序號)
①若集合A={x|kx2+4x+4=0}中只有一個元素,則k=1;
②在同一平面直角坐標系中,y=2x與y=2﹣x的圖象關(guān)于y軸對稱;
③y=(
)﹣x是增函數(shù);
④定義在R上的奇函數(shù)f(x)有f(x)f(﹣x)≤0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{bn}(bn>0)的首項為1,且前n項和Sn滿足Sn﹣Sn﹣1=
+
(n≥2).
(1)求{bn}的通項公式;
(2)若數(shù)列{
}前n項和為Tn , 問Tn>
的最小正整數(shù)n是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐
中,四邊形
為梯形,
,且
,
是邊長為2的正三角形,頂點
在
上的射影為點
,且
,
,
.
![]()
(1)證明:平面
平面
;
(2)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個圓心角為直角的扇形
花草房,半徑為1,點
是花草房弧上一個動點,不含端點,現(xiàn)打算在扇形
內(nèi)種花,
,垂足為
,
將扇形
分成左右兩部分,在
左側(cè)部分三角形
為觀賞區(qū),在
右側(cè)部分種草,已知種花的單位面積的造價為
,種草的單位面積的造價為2
,其中
為正常數(shù),設(shè)
,種花的造價與種草的造價的和稱為總造價,不計觀賞區(qū)的造價,總造價為![]()
![]()
求
關(guān)于
的函數(shù)關(guān)系式;
求當
為何值時,總造價最小,并求出最小值。
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com