【題目】已知函數(shù)f(x)=ex-a+lnx。
(1)若a=1,求證:當(dāng)x>1時,f(x)>2x-1
(2)若存在x0≥e,使f(x)<2lnx0,求實數(shù)a的取值范圍.
【答案】(1)見解析(2)見解析
【解析】試題分析:
(1)由題意對函數(shù)求導(dǎo),然后構(gòu)造函數(shù)
,結(jié)合函數(shù)的性質(zhì)即可證得題中的結(jié)論;
(2)結(jié)合題意構(gòu)造函數(shù)
,結(jié)合其導(dǎo)函數(shù)的性質(zhì)可得實數(shù)a的取值范圍是
.
試題解析:
(1)a=1時,f(x)=ex-1+lnx,
=ex-1+![]()
設(shè)g(x)=ex-1+lnx-2x+1,
=ex-1+
-2
=ex-1-
,x>1,ex-1>1,0>
<1.
=ex-1-
>0
在(1,+∞)遞增,又g’(1)=0,∴x>1時, ![]()
g(x)在(1,+∞)遞增,x>1時,g(x)>g(1)=0,即ex+lnx-2x+1>0
x>1時,ex+lnx>2x-1,即f(x)>2x-1
(2)若存在x0≥e,使f(x0)<2lnx0,即ex0-a<lnx0
即存在x0>e,使ea>![]()
設(shè)h(x)=
(x≥e),則h’(x)=![]()
u=lnx-
,u’=
在[e,+∞)遞增。
x=e時,u=1-
>0,所以u>0在[e,+00)恒成立,
h’(x)>0,在[e,+00)恒成立,所以h(x)[e,+∞)遞增
x≥e,時h(x)min=h(e)=ee
需ea>ee
a>e
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一邊長為2的正三角形ABC的兩個頂點A、B在平面α上,另一個頂點C在平面α上的射影為C',則三棱錐A﹣BC'C的體積的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)乒乓球團體比賽的規(guī)則如下:進行5場比賽,除第3場為雙打外,其余各場為單打,參賽的每個隊選出3名運動員參加比賽,每個隊員打兩場,且第1,2場與第4,5場不能是某個運動員連續(xù)比賽.某隊有4名乒乓球運動員,其中
不適合雙打,則該隊教練安排運動員參加比賽的方法共有種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
的方程為
,點
是拋物線
上到直線
距離最小的點,點
是拋物線上異于點
的點,直線
與直線
交于點
,過點
與
軸平行的直線與拋物線
交于點
.
(Ⅰ)求點
的坐標(biāo);
(Ⅱ)證明直線
恒過定點,并求這個定點的坐標(biāo).
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知指數(shù)函數(shù)y=g(x)滿足:g(3)=27,定義域為R的函數(shù)f(x)=
是奇函數(shù).
(1)確定y=g(x),y=f(x)的解析式;
(2)若h(x)=kx﹣g(x)在(0,1)上有零點,求k的取值范圍;
(3)若對任意的t∈(1,4),不等式f(2t﹣3)+f(t﹣k)>0恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=1﹣ ![]()
(1)求函數(shù)f(x)的定義域和值域;
(2)試判斷函數(shù)f(x)的奇偶性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的首項a1=3,且公差d≠0,其前n項和為Sn , 且a1 , a4 , a13分別是等比數(shù)列{bn}的b2 , b3 , b4 . (Ⅰ)求數(shù)列{an}與{bn}的通項公式;
(Ⅱ)證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場欲經(jīng)銷某種商品,考慮到不同顧客的喜好,決定同時銷售A、B兩個品牌,根據(jù)生產(chǎn)廠家營銷策略,結(jié)合本地區(qū)以往經(jīng)銷該商品的大數(shù)據(jù)統(tǒng)計分析,A品牌的銷售利潤y1與投入資金x成正比,其關(guān)系如圖1所示,B品牌的銷售利潤y2與投入資金x的算術(shù)平方根成正比,其關(guān)系如圖2所示(利潤與資金的單位:萬元). ![]()
(1)分別將A、B兩個品牌的銷售利潤y1、y2表示為投入資金x的函數(shù)關(guān)系式;
(2)該商場計劃投入5萬元經(jīng)銷該種商品,并全部投入A、B兩個品牌,問:怎樣分配這5萬元資金,才能使經(jīng)銷該種商品獲得最大利潤,其最大利潤為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)>f(x),且f(x+2)為奇函數(shù),f(4)=﹣1,則不等式f(x)<ex的解集為( )
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(﹣∞,0)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com