【題目】已知橢圓
:
的離心率為
,點A為該橢圓的左頂點,過右焦點
的直線l與橢圓交于B,C兩點,當
軸時,三角形ABC的面積為18.
![]()
求橢圓
的方程;
如圖,當動直線BC斜率存在且不為0時,直線
分別交直線AB,AC于點M、N,問x軸上是否存在點P,使得
,若存在求出點P的坐標;若不存在說明理由.
科目:高中數學 來源: 題型:
【題目】![]()
(本題滿分15分)已知m>1,直線
,
橢圓
,
分別為橢圓
的左、右焦點.
(Ⅰ)當直線
過右焦點
時,求直線
的方程;
(Ⅱ)設直線
與橢圓
交于
兩點,
,
的重心分別為
.若原點
在以線段
為直徑的圓內,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓
的焦點是
,
,且過點
.
(1)求橢圓
的標準方程;
(2)過左焦點
的直線
與橢圓
相交于
、
兩點,
為坐標原點.問橢圓
上是否存在點
,使線段
和線段
相互平分?若存在,求出點
的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,過橢圓E的左焦點
且與x軸垂直的直線與橢圓E相交于的P,Q兩點,O為坐標原點,
的面積為
.
(1)求橢圓E的方程;
(2)點M,N為橢圓E上不同兩點,若
,求證:
的面積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
對定義在區間
上的函數
,若存在閉區間
和常數
,使得對任意的
都有
,且對任意的
都有
恒成立,則稱函數
為區間
上的“U型”函數。
(1)求證:函數
是
上的“U型”函數;
(2)設
是(1)中的“U型”函數,若不等式
對一切的
恒成立,求實數
的取值范圍;
(3)若函數
是區間
上的“U型”函數,求實數
和
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】第二屆中國國際進口博覽會于2019年11月5日至10日在上海國家會展中心舉行.它是中國政府堅定支持貿易自由化和經濟全球化,主動向世界開放市場的重要舉措,有利于促進世界各國加強經貿交流合作,促進全球貿易和世界經濟增長,推動開放世界經濟發展.某機構為了解人們對“進博會”的關注度是否與性別有關,隨機抽取了100名不同性別的人員(男、女各50名)進行問卷調查,并得到如下
列聯表:
男性 | 女性 | 合計 | |
關注度極高 | 35 | 14 | 49 |
關注度一般 | 15 | 36 | 51 |
合計 | 50 | 50 | 100 |
(1)根據列聯表,能否有99.9%的把握認為對“進博會”的關注度與性別有關;
(2)若從關注度極高的被調查者中按男女分層抽樣的方法抽取7人了解他們從事的職業情況,再從7人中任意選取2人談談關注“進博會”的原因,求這2人中至少有一名女性的概率.
附:
.
參考數據:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,點
在橢圓C上.
(1)求橢圓C的標準方程;
(2)若直線上
與C交于A,B兩點,是否存在l,使得點
在以AB為直徑的圓外.若存在,求出k的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com