| A. | 1條 | B. | 2條 | C. | 3條 | D. | 4條 |
分析 分兩種情況考慮,第一:當所求直線與兩坐標軸的截距不為0時,設出該直線的方程為x+y=a,把已知點坐標代入即可求出a的值,得到直線的方程;第二:當所求直線與兩坐標軸的截距為0時,設該直線的方程為y=kx,把已知點的坐標代入即可求出k的值,得到直線的方程,綜上,得到所有滿足題意的直線的方程.
解答 解:①當所求的直線與兩坐標軸的截距不為0時,設該直線的方程為x+y=a,
把(3,-1)代入所設的方程得:a=2,則所求直線的方程為x+y=2即x+y-2=0;
②當所求的直線與兩坐標軸的截距為0時,設該直線的方程為y=kx,
把(3,-1)代入所求的方程得:k=-$\frac{1}{3}$,
則所求直線的方程為y=-$\frac{1}{3}$x即x+3y=0.
綜上,所求直線的方程為:x+y-2=0或x+3y=0,
故選:B.
點評 此題考查學生會根據條件設出直線的截距式方程和點斜式方程,考查了分類討論的數學思想.
科目:高中數學 來源: 題型:選擇題
| A. | M=N | B. | M?N | C. | M?N | D. | M∩N=∅ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | (log2x)′=$\frac{1}{xln2}$ | B. | (x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$ | ||
| C. | (cosx)′=sinx | D. | ($\frac{{e}^{x}}{x}$)′=$\frac{x{e}^{x}+{e}^{x}}{{x}^{2}}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com