某商家經(jīng)銷一種銷售成本
為每千克40元的水產(chǎn)品,據(jù)市場(chǎng)分析,若按每千克50元銷售,一個(gè)月能售出500kg;銷售單價(jià)每漲1元,月銷售量就減少10kg,針對(duì)這種銷售情況,
(1)設(shè)銷售單價(jià)為每千克x元,月銷售利潤(rùn)
為y元,求y與x的函數(shù)關(guān)系式;
商店想在月銷售成本不超過(guò)10000元的情況下,使得月銷售利潤(rùn)不少于8000元,銷售單價(jià)應(yīng)定為多少元時(shí),利潤(rùn)最大?
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(13分)定義在R上的增函數(shù)y=f(x)對(duì)任意x,y
R都有f(x+y)=f(x)+f(y),則
(1)求f(0) (2) 證明:f(x)為奇函數(shù)
(3)若
對(duì)任意
恒成立,求實(shí)數(shù)k的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)二次函數(shù)
,已知不論
為何實(shí)數(shù)恒有
,![]()
(1)求證:
;
(
2)求證:
;
(3)若函數(shù)
的最大值為8,求
值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之間時(shí),其生產(chǎn)的總成本
(萬(wàn)元)與年產(chǎn)量
(噸)之間的函數(shù)關(guān)系式近似地表示為
.問(wèn):(1)每噸平均出廠價(jià)為16萬(wàn)元,年產(chǎn)量為多少噸時(shí),可獲得最大利潤(rùn)?并求出最大利潤(rùn);
(2)年產(chǎn)量為多少噸時(shí),每噸的平均成本最低?
并求出最低成本。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知函數(shù)
和點(diǎn)
,過(guò)點(diǎn)
作曲線
的兩條切線
、
,切點(diǎn)分別為
、
.
(1)求證:
為關(guān)于
的方程
的兩根;
(2)設(shè)
,求函數(shù)
的表達(dá)式;
(3)在(2)的條件下,若在區(qū)間
內(nèi)總存在
個(gè)實(shí)數(shù)
(可以相同),使得不等式
成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品, 根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè), 甲產(chǎn)品
的利潤(rùn)與投資成正比, 其關(guān)系如圖1, 乙產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比, 其關(guān)系如
圖2 (注: 利潤(rùn)與投資
的單位: 萬(wàn)元).
(Ⅰ) 分別將甲、乙兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式;
(Ⅱ) 該企業(yè)籌集了100萬(wàn)元資金投入生產(chǎn)甲、乙兩種產(chǎn)品, 問(wèn): 怎樣分配這100萬(wàn)元資金, 才能使企業(yè)獲得最大利潤(rùn), 其最大利潤(rùn)為多少萬(wàn)元?![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com