【題目】已知函數
.
(Ⅰ)若
,令函數
,求函數
在
上的極大值、極小值;
(Ⅱ)若函數
在
上恒為單調遞增函數,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運
會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出。某機構為調查我國公民對申辦奧運會的態度,選了某小區的100位居民調查結果統計如下:
支持 | 不支持 | 合計 | |
年齡不大于50歲 | 80 | ||
年齡大于50歲 | 10 | ||
合計 | 70 | 100 |
(1)根據已有數據,把表格數據填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關?
(3)已知在被調查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現從這5名女性中隨機抽取3人,求至多有1位教師的概率.
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數
的導函數的圖象如圖所示,給出下列判斷:
①函數
在區間
內單調遞增;②函數
在區間
內單調遞減;③函數
在區間
內單調遞增;④當
時,函數
有極小值;⑤當
時,函數
有極大值.則上述判斷中正確的是( )
![]()
A. ①② B. ③
C. ②③ D. ③④⑤
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設首項為1的正項數列{an}的前n項和為Sn,且Sn+1-3Sn=1.
(1) 求證:數列{an}為等比數列;
(2) 數列{an}是否存在一項ak,使得ak恰好可以表示為該數列中連續r(r∈N*,r≥2)項的和?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三條直線l1:2x-y+a =" 0" (a>0),直線l2:-4x+2y+1 = 0和直線l3:x+y-1= 0,且l1與l2的距離是
.
(1)求a的值;
(2)能否找到一點P,使得P點同時滿足下列三個條 件:
①P是第一象限的點;
②P 點到l1的距離是P點到l2的距離的
;
③P點到l1的距離與P點到l3的距離之比是
∶
.若能,求P點坐標;若不能,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在
中,根據下列條件解三角形,其中有兩個解的是( )
A. b="10," A=450, C=600 B. a=6, c=5, B=600
C. a=7, b=5, A=600 D. a=14, b="16," A=450
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【湖南省2017屆高三長郡中學、衡陽八中等十三校重點中學第一次聯考數學(理)】
已知函數
.
(1)當
時,試求函數圖像過點
的切線方程;
(2)當
時,若關于
的方程
有唯一實數解,試求實數
的取值范圍;
(3)若函數
有兩個極值點
,且不等式
恒成立,試求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓
:
的離心率為
,以橢圓
的左頂點
為圓心作圓
:
,設圓
與橢圓
交于點
與點
.
![]()
(1)求橢圓
的方程;
(2)求
的最小值,并求此時圓
的方程;
(3)設點
是橢圓
上異于
,
的任意一點,且直線
分別與
軸交于點
,
為坐標原點,求證:
為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com