【題目】(2015·湖南)如圖,直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,E,F分別是BC,CC1的中點。![]()
(1)證明:平面AEF⊥平面B1BCC1;
(2)若直線AC1與平面AA1BB1所成的角為45°,求三棱錐F-AEC的體積。
【答案】
(1)
略。
(2)
![]()
【解析】(I)如圖,因為三棱柱ABC-A1B1C1是直三棱柱,
所以AE⊥BB1 , 又E是正三角形的邊BC的中點,
ABC所以AE⊥BC,因此AE⊥平面B1BCC1 , 而AE
平面AEF,
所以平面AEF⊥平面B1BCC1。
(II)設(shè)AB的中點為D,連接A1DCD,因為△ABC是正三角形,所以CD⊥AB,又三棱柱ABC-A1B1C1是直三棱柱,所以,因此CD⊥平面A1AB1B,于是∠CA1D直線A1C與平面A1ABB1所成的角,由題設(shè)知∠CA1D=45°,
所以A1D=CD=
AB=
,
在Rt△AA1D中,AA1=
=
=
,所以FC=
AA1=![]()
故三棱錐F-AEC的體積V=
SAECxFC=
x
x
=
。![]()
【考點精析】解答此題的關(guān)鍵在于理解直線與平面垂直的判定的相關(guān)知識,掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,長方體ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,點E、F分別在A1B1、C1D1上,A1E=D1F=4,過點E,F的平面
與此長方體的面相交,交線圍成一個正方形。![]()
(1)(Ⅰ)在圖中畫出這個正方形(不必說出畫法和理由);
(2)(Ⅱ)求直線AF與平面
所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)如圖,A , B , C , D為平面四邊形ABCD的四個內(nèi)角.![]()
(1)證明:tan
=![]()
(2)若A+C=180°, AB=6, BC=3, CD=4, AD=5, 求tan
+tan
+tan
+tan
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·陜西)如圖1,在直角梯形ABCD中,AD∥BC,
BAD=
,AB=BC=1,
AD=2, E是AD的中點,0是AC與BE的交點.將△ABE沿BE折起到△A1BE的位置,如圖2.![]()
(1)證明:CD⊥平面A1OC
(2)若平面A1BE⊥平面BCDE, 四棱錐A1-BCDE的體積為36
,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·江蘇) 已知函數(shù)f(x)=x3+ax2+b(a,b
R).
(1)試討論f(x)的單調(diào)性;
(2)若b=c-a(實數(shù)c是a與無關(guān)的常數(shù)),當(dāng)函數(shù)f(x)有三個不同的零點時,a的取值范圍恰好是(-
,-3)
(1,
)
(
,+
),求c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在R上的函數(shù)
滿足
,其導(dǎo)函數(shù)
滿足
,則下列結(jié)論中一定錯誤的是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·湖北)已知數(shù)列
的各項均為正數(shù),
,
為自然對數(shù)的底數(shù).
(1)求函數(shù)
的單調(diào)區(qū)間,并比較
與
的大;
(2)計算
,
,
, 由此推測計算
的公式,并給出證明;
(3)令
, 數(shù)列
,
的前
項和分別記為
,
, 證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知數(shù)列
是遞增的等比數(shù)列,a1+a4=9,a2a3=8,則數(shù)列
的前n項和等于
,解得a1=1,a4=8,或者a1=8,a4=1,但由于是遞增數(shù)列,即a1=1,a4=8,即q3=
=8,所以q=2.因而數(shù)列
的前n項和為 。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com