【題目】下列說法正確的是( )
A.在(0,
)內,sinx>cosx
B.函數y=2sin(x+
)的圖象的一條對稱軸是x=
π
C.函數y=
的最大值為π
D.函數y=sin2x的圖象可以由函數y=sin(2x﹣
)的圖象向右平移
個單位得到
【答案】C
【解析】解:對于A,當x∈(0,
)時,由y=sinx,y=cosx的性質得:
當x∈(0,
)時,cosx>sinx,x=
時,sinx=cosx,x∈(
,
)時,sinx>cosx,故A錯誤;
對于B,令x+
=kπ+
,k∈Z,顯然當x=
π時,找不到整數k使上式成立,故B錯誤;
對于C,由于tan2x≥0,∴1+tan2x≥1.
∴y=
≤π.
∴函數y=
的最大值為π,C正確;
對于D,y=sin(2x﹣
)的圖象向右平移
個單位得到:y=sin[2(x﹣
)﹣
]=sin(2x﹣
)=﹣cos2x,故D錯誤.
故選:C.
【考點精析】解答此題的關鍵在于理解命題的真假判斷與應用的相關知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.
科目:高中數學 來源: 題型:
【題目】已知關于x的不等式ax2+5x+c>0的解集為{x|
<x<
},
(1)求a,c的值;
(2)解關于x的不等式ax2+(ac+b)x+bc≥0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知圓
的極坐標方程為
,以極點為原點,極軸為
軸的正半軸建立平面直角坐標系,取相同單位長度(其中
,
),若傾斜角為
且經過坐標原點的直線
與圓
相交于點
(
點不是原點).
(1)求點
的極坐標;
(2)設直線
過線段
的中點
,且直線
交圓
于
兩點,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,動圓
與圓
外切,且與直線
相切,記圓心
的軌跡為曲線
.
(1)求曲線
的方程;
(2)設過定點
(
為非零常數)的動直線
與曲線
交于
兩點,問:在曲線
上是否存在點
(與
兩點相異),當直線
的斜率存在時,直線
的斜率之和為定值.若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐
中,底面
是菱形,且
,點
是棱
的中點,平面
與棱
交于點
.
![]()
(
)求證:
.
(
)若
,且平面
平面
,
求①二面角
的銳二面角的余弦值.
②在線段
上是否存在一點
,使得直線
與平面
所成角等于
,若存在,確定
的位置,若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com