【題目】某車間租賃甲、乙兩種設(shè)備生產(chǎn)A,B兩類產(chǎn)品,甲種設(shè)備每天能生產(chǎn)A類產(chǎn)品8件和B類產(chǎn)品15件,乙種設(shè)備每天能生產(chǎn)A類產(chǎn)品10件和B類產(chǎn)品25件,已知設(shè)備甲每天的租賃費(fèi)300元,設(shè)備乙每天的租賃費(fèi)400元,現(xiàn)車間至少要生產(chǎn)A類產(chǎn)品100件,B類產(chǎn)品200件,所需租賃費(fèi)最少為__元![]()
【答案】3800
【解析】
設(shè)甲種設(shè)備需要生產(chǎn)
天,乙種設(shè)備需要生產(chǎn)
天,根據(jù)兩種產(chǎn)品生產(chǎn)件數(shù)的限制列出約束條件,根據(jù)兩種設(shè)備的租賃費(fèi)求出目標(biāo)函數(shù),然后利用線性規(guī)劃,求出最優(yōu)解即可.
![]()
設(shè)甲種設(shè)備需要生產(chǎn)
天,乙種設(shè)備需要生產(chǎn)
天,
該公司所需租賃費(fèi)為
元,則
,
分![]()
甲、乙兩種設(shè)備生產(chǎn)A,B兩類產(chǎn)品的情況為:
,做出不等式表示的平面區(qū)域,
由
解得![]()
當(dāng)
經(jīng)過的交點(diǎn)
時(shí),
目標(biāo)函數(shù)
取得最低為3800元.
故答案為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為菱形,
為
上一點(diǎn).
(1)若
平面
,試說明點(diǎn)
的位置并證明的結(jié)論;
(2)若
為
的中點(diǎn),
平面
,且
,
求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求解下列各題.
(1)已知
,且
為第一象限角,求
,
;
(2)已知
,且
為第三象限角,求
,
;
(3)已知
,且
為第四象限角,求
,
;
(4)已知
,且
為第二象限角,求
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高三理科班共有60名同學(xué)參加某次考試,從中隨機(jī)挑選出5名同學(xué),他們的數(shù)學(xué)成績(jī)
與物理成績(jī)
如下表:
![]()
數(shù)據(jù)表明
與
之間有較強(qiáng)的線性關(guān)系.
(1)求
關(guān)于
的線性回歸方程;
(2)該班一名同學(xué)的數(shù)學(xué)成績(jī)?yōu)?10分,利用(1)中的回歸方程,估計(jì)該同學(xué)的物理成績(jī);
(3)本次考試中,規(guī)定數(shù)學(xué)成績(jī)達(dá)到125分為優(yōu)秀,物理成績(jī)達(dá)到100分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為
和
,且除去抽走的5名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有5人.能否在犯錯(cuò)誤概率不超過0.01的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?
參考數(shù)據(jù):回歸直線的系數(shù)
,
.
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知圓
的方程為:
,直線
的方程為
.
(1)求證:直線
恒過定點(diǎn);
(2)當(dāng)直線
被圓
截得的弦長(zhǎng)最短時(shí),求直線
的方程;
(3)在(2)的前提下,若
為直線
上的動(dòng)點(diǎn),且圓
上存在兩個(gè)不同的點(diǎn)到點(diǎn)
的距離為
,求點(diǎn)
的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,底面
為直角梯形,
,
,平面
底面
,
為
的中點(diǎn),
,
是棱
上的點(diǎn).
(1)求證:平面
平面
;
(2)若
,
,
,異面直線
與
所成角的余弦值為
,求
的值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
的直角邊OA在x軸上,頂點(diǎn)B的坐標(biāo)為
,直線CD交AB于點(diǎn)
,交x軸于點(diǎn)
.
![]()
(1)求直線CD的方程;
(2)動(dòng)點(diǎn)P在x軸上從點(diǎn)
出發(fā),以每秒1個(gè)單位的速度向x軸正方向運(yùn)動(dòng),過點(diǎn)P作直線l垂直于x軸,設(shè)運(yùn)動(dòng)時(shí)間為t.
①點(diǎn)P在運(yùn)動(dòng)過程中,是否存在某個(gè)位置,使得
?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
②請(qǐng)?zhí)剿鳟?dāng)t為何值時(shí),在直線l上存在點(diǎn)M,在直線CD上存在點(diǎn)Q,使得以OB為一邊,O,B,M,Q為頂點(diǎn)的四邊形為菱形,并求出此時(shí)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)中xOy,圓C1:x2+y2=8,圓C2:x2+y2=18,點(diǎn)M(1,0),動(dòng)點(diǎn)A、B分別在圓C1和圓C2上,滿足
,則
的取值范圍是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系
中,橢圓:
的離心率為
,直線l:y=2上的點(diǎn)和橢圓上的點(diǎn)的距離的最小值為1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 已知橢圓的上頂點(diǎn)為A,點(diǎn)B,C是上的不同于A的兩點(diǎn),且點(diǎn)B,C關(guān)于原點(diǎn)對(duì)稱,直線AB,AC分別交直線l于點(diǎn)E,F.記直線
與
的斜率分別為
,
.
① 求證:
為定值;
② 求△CEF的面積的最小值.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com