如圖,在四棱錐
中,底面
是正方形,側(cè)棱
⊥底面
,
,
是
的中點(diǎn),作
交
于點(diǎn)
.![]()
(1)證明
平面
;
(2)證明
平面
.
(1)見(jiàn)解析(2)見(jiàn)解析
解析試題分析:(1)連接AC,AC交BD于O.連接EO.根據(jù)正方形的性質(zhì),得EO是△PAC的中位線(xiàn),得PA∥EO,從而得到PA∥平面EDB;
(2)過(guò)F點(diǎn)作FG⊥PC于G,可得FG⊥平面PDE,F(xiàn)G是點(diǎn)F到平面PDE的距離.等腰Rt△PDC中,算出PE長(zhǎng)和△PED的面積,再利用三角形相似算出PF和FG的長(zhǎng),最后用錐體體積公式,可算出三棱錐P-DEF的體積.
試題解析:方法一:
(1)證明:連結(jié)AC,AC交BD于O,連結(jié)EO。
∵底面ABCD是正方形,∴點(diǎn)O是AC的中點(diǎn)
在
中,EO是中位線(xiàn),∴PA//EO
而
平面EDB且
平面EDB,
所以,PA//平面EDB![]()
(2)證明:
∵PD⊥底面ABCD且
底面ABCD,∴![]()
∵PD=DC,可知
是等腰直角三角形,而DE是斜邊PC的中線(xiàn),
∴
。 ①
同樣由PD⊥底面ABCD,得PD⊥BC。
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC。
而
平面PDC,∴
。 ②
由①和②推得
平面PBC。
而
平面PBC,∴![]()
又
且
,所以PB⊥平面EFD。
方法二:如圖所示建立空間直角坐標(biāo)系,D為坐標(biāo)原點(diǎn),設(shè)
。
(1)證明:連結(jié)AC,AC交BD于G,連結(jié)EG。
依題意得
。
∵底面ABCD是正方形,∴G是此正方形的中心,故點(diǎn)G的坐標(biāo)為
且
。
∴
,這表明PA//EG。
而
平面EDB且
平面EDB,∴PA//平面EDB。![]()
(2)證明;依題意得
,
。又
,故
。
∴
.
由已知
,且
,所以
平面EFD.
考點(diǎn):直線(xiàn)與平面平行的判定與性質(zhì),二面角,直線(xiàn)與平面垂直的判定與性質(zhì)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直三棱柱
的底面
是等腰直角三角形,
,側(cè)棱
底面
,且
,
是
的中點(diǎn),
是
上的點(diǎn).
(1)求異面直線(xiàn)
與
所成角
的大。ńY(jié)果用反三角函數(shù)表示);
(2)若
,求線(xiàn)段
的長(zhǎng).![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且
底面ABCD,
,E是PA的中點(diǎn).![]()
(1)求證:平面
平面EBD;
(2)若PA=AB=2,直線(xiàn)PB與平面EBD所成角的正弦值為
,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的幾何體中,四邊形
為平行四邊形,
,
平面
,
,
,
,
.![]()
(1)若
是線(xiàn)段
的中點(diǎn),求證:
平面
;
(2)若
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱柱
中,側(cè)棱
平面
,
為等腰直角三角形,
,且
分別是
的中點(diǎn).![]()
(1)求證:
平面
;
(2)求銳二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在四棱錐
中,
//
,
,
,
平面
,
. ![]()
(1)求證:
平面
;
(2)求異面直線(xiàn)
與
所成角的余弦值;
(3)設(shè)點(diǎn)
為線(xiàn)段
上一點(diǎn),且直線(xiàn)
與平面
所成角的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐
的底面為直角梯形,
,
,
底面
,且
,
是
的中點(diǎn).
⑴求證:直線(xiàn)
平面
;
⑵⑵若直線(xiàn)
與平面
所成的角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,四棱錐P—ABCD中,AB
AD,CD
AD,PA
底面ABCD,PA=AD=CD=2AB=2,M為PC的中點(diǎn)。![]()
(1)求證:BM∥平面PAD;
(2)在側(cè)面PAD內(nèi)找一點(diǎn)N,使MN
平面PBD;
(3)求直線(xiàn)PC與平面PBD所成角的正弦。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com