【題目】對(duì)于數(shù)列{an},定義
為{an}的“優(yōu)值”,現(xiàn)在已知某數(shù)列{an}的“優(yōu)值”
,記數(shù)列{an﹣kn}的前n項(xiàng)和為Sn , 若Sn≤S5對(duì)任意的n∈N+恒成立,則實(shí)數(shù)k的最大值為 .
【答案】![]()
【解析】解:由題意,
=2n+1 , 則a1+2a2+…+2n﹣1an=n2n+1 ,
當(dāng)n≥2時(shí),a1+2a2+…+2n﹣2an﹣1=(n﹣1)2n ,
兩式相減可得2n﹣1an=n2n+1﹣(n﹣1)2n=(n+1)2n ,
則an=2(n+1),
當(dāng)n=1時(shí),a1=4,
上式對(duì)a1也成立,
故an=2(n+1),n∈N+ ,
則an﹣kn=(2﹣k)n+2,
則數(shù)列{an﹣kn}為等差數(shù)列,
故Sn≤S5對(duì)任意的n(n∈N*)恒成立可化為
a5≥0,a6≤0,
即
,
解得
≤k≤
,
則實(shí)數(shù)k的最大值為
,
所以答案是:
.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系
才能正確解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
,與
軸不重合的直線
經(jīng)過(guò)左焦點(diǎn)
,且與橢圓
相交于
,
兩點(diǎn),弦
的中點(diǎn)為
,直線
與橢圓
相交于
,
兩點(diǎn).
(Ⅰ)若直線
的斜率為1,求直線
的斜率;
(Ⅱ)是否存在直線
,使得
成立?若存在,求出直線
的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,則log
(a5+a7+a9)的值是( )
A.﹣ ![]()
B.﹣5
C.5
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)的定義域?yàn)镈,滿足:①f(x)在D內(nèi)是單調(diào)函數(shù);②存在[
]D,使得f(x)在[
]上的值域?yàn)閇a,b],那么就稱函數(shù)y=f(x)為“優(yōu)美函數(shù)”,若函數(shù)f(x)=logc(cx﹣t)(c>0,c≠1)是“優(yōu)美函數(shù)”,則t的取值范圍為( )
A.(0,1)
B.(0,
)
C.(﹣∞,
)
D.(0,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
的圓心在直線
上,且與直線
相切于點(diǎn)
.
(1)求圓
方程;
(2)是否存在過(guò)點(diǎn)
的直線
與圓
交于
兩點(diǎn),且
的面積是
(
為坐標(biāo)原點(diǎn)),若存在,求出直線
的方程,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線
:
恒過(guò)定點(diǎn)
,圓
經(jīng)過(guò)點(diǎn)
和點(diǎn)
,且圓心在直線
上.
(1)求定點(diǎn)
的坐標(biāo);
(2)求圓
的方程;
(3)已知點(diǎn)
為圓
直徑的一個(gè)端點(diǎn),若另一個(gè)端點(diǎn)為點(diǎn)
,問(wèn):在
軸上是否存在一點(diǎn)
,使得
為直角三角形,若存在,求出
的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A,B,C的坐標(biāo)分別為A(3,0),B(0,3),C(cos α,sin α),α∈
.
(1)若|
|=|
|,求角α的值;
(2)若
=-1,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知離心率為
的橢圓
過(guò)點(diǎn)
,點(diǎn)
分別為橢圓的左、右焦點(diǎn),過(guò)
的直線
與
交于
兩點(diǎn),且
.
(1)求橢圓
的方程;
(2)求證:以
為直徑的圓過(guò)坐標(biāo)原點(diǎn).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com