【題目】2019年6月25日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請全國人大常委會審議,草案對“生活垃圾污染環(huán)境的防治”進行了專章規(guī)定.草案提出,國家推行生活垃圾分類制度.為了了解人民群眾對垃圾分類的認(rèn)識,某市環(huán)保部門對該市市民進行了一次垃圾分類網(wǎng)絡(luò)知識問卷調(diào)查,每一位市民僅有一次參加機會,通過隨機抽樣,得到參加問卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:
得分 |
|
|
|
|
|
|
|
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數(shù)分布表可以認(rèn)為,此次問卷調(diào)查的得分
服從正態(tài)分布
,
近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表),請利用正態(tài)分布的知識求
;
(2)在(1)的條件下,市環(huán)保部門為此次參加問卷調(diào)查的市民制定如下獎勵方案:
①得分不低于
“的可以獲贈2次隨機話費,得分低于
的可以獲贈1次隨機話費;
②每次獲贈的隨機話費和對應(yīng)的概率為:
獲贈的隨機話費(單位:元) | 20 | 40 |
概率 |
|
|
現(xiàn)市民小王要參加此次問卷調(diào)查,記
(單位:元)為該市民參加問卷調(diào)查獲贈的話費,求
的分布列及數(shù)學(xué)期望.
附:①
;②若
,則
,
,
,
【答案】(1)
(2)分布列見解析,![]()
【解析】
(1)先求出
,再根據(jù)正態(tài)分布的知識求出
即可;
(2)先求出
的所有可能情況
元,再求
的的分布列及數(shù)學(xué)期望即可.
(1)根據(jù)題中所給的統(tǒng)計表,結(jié)合題中所給的條件,可以求得
![]()
;
又
,
,
所以
.
(2)根據(jù)題意可以得出所得話費的可能值有20,40,60,80元,
得20元的情況為低于平均值,概率
,
得40元的情況有一次機會獲得40元,兩次機會獲得2個20元,概率
,
得60元的情況為兩次機會,一次40元,一次20元,概率
,
得80元的情況為兩次機會,都是40元,概率
,
所以變量
的分布列為:
| 20 | 40 | 60 | 80 |
|
|
|
|
|
所以其期望為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
過點
,傾斜角為
,在以坐標(biāo)原點為極點,
軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線
的方程為
.
(1)寫出直線
的參數(shù)方程和曲線
的直角坐標(biāo)方程;
(2)若直線
與曲線
相交于
兩點,設(shè)點
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐
中,底面
是邊長為6的正三角形,
底面
,且
與底面
所成的角為
.
![]()
(1)求三棱錐
的體積;
(2)若
是
的中點,求異面直線
與
所成角的大小(結(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地要建造一個邊長為2(單位:
)的正方形市民休閑公園
,將其中的區(qū)域
開挖成一個池塘,如圖建立平面直角坐標(biāo)系后,點
的坐標(biāo)為
,曲線
是函數(shù)
圖像的一部分,過邊
上一點
在區(qū)域
內(nèi)作一次函數(shù)
(
)的圖像,與線段
交于點
(點
不與點
重合),且線段
與曲線
有且只有一個公共點
,四邊形
為綠化風(fēng)景區(qū).
![]()
(1)求證:
;
(2)設(shè)點
的橫坐標(biāo)為
,
①用
表示
、
兩點的坐標(biāo);
②將四邊形
的面積
表示成關(guān)于
的函數(shù)
,并求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某貧困縣在政府“精準(zhǔn)扶貧”的政策指引下,充分利用自身資源,大力發(fā)展養(yǎng)茶業(yè).該縣農(nóng)科所為了對比A,B兩種不同品種茶葉的產(chǎn)量,在試驗田上分別種植了A,B兩種茶葉各
畝,所得畝產(chǎn)數(shù)據(jù)(單位:千克)如下:
A:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
;
B:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
;
(1)從A,B兩種茶葉畝產(chǎn)數(shù)據(jù)中各任取1個,求這兩個數(shù)據(jù)都不低于
的概率;
(2)從B品種茶葉的畝產(chǎn)數(shù)據(jù)中任取
個,記這兩個數(shù)據(jù)中不低于
的個數(shù)為
,求
的分布列及數(shù)學(xué)期望;
(3)根據(jù)以上數(shù)據(jù),你認(rèn)為選擇該縣應(yīng)種植茶葉A還是茶葉B?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)打算處理一批產(chǎn)品,這些產(chǎn)品每箱100件,以箱為單位銷售.已知這批產(chǎn)品中每箱出現(xiàn)的廢品率只有
或者
兩種可能,兩種可能對應(yīng)的概率均為0.5.假設(shè)該產(chǎn)品正品每件市場價格為100元,廢品不值錢.現(xiàn)處理價格為每箱8400元,遇到廢品不予更換.以一箱產(chǎn)品中正品的價格期望值作為決策依據(jù).
(1)在不開箱檢驗的情況下,判斷是否可以購買;
(2)現(xiàn)允許開箱,有放回地隨機從一箱中抽取2件產(chǎn)品進行檢驗.
①若此箱出現(xiàn)的廢品率為
,記抽到的廢品數(shù)為
,求
的分布列和數(shù)學(xué)期望;
②若已發(fā)現(xiàn)在抽取檢驗的2件產(chǎn)品中,其中恰有一件是廢品,判斷是否可以購買.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校興趣小組在如圖所示的矩形區(qū)域
內(nèi)舉行機器人攔截挑戰(zhàn)賽,在
處按
方向釋放機器人甲,同時在
處按某方向釋放機器人乙,設(shè)機器人乙在
處成功攔截機器人甲.若點
在矩形區(qū)域
內(nèi)(包含邊界),則挑戰(zhàn)成功,否則挑戰(zhàn)失敗.已知
米,
為
中點,機器人乙的速度是機器人甲的速度的2倍,比賽中兩機器人均按勻速直線運動方式行進,記
與
的夾角為
.
![]()
(1)若
,
足夠長,則如何設(shè)置機器人乙的釋放角度才能挑戰(zhàn)成功?(結(jié)果精確到
);
(2)如何設(shè)計矩形區(qū)域
的寬
的長度,才能確保無論
的值為多少,總可以通過設(shè)置機器人乙的釋放角度使機器人乙在矩形區(qū)域
內(nèi)成功攔截機器人甲?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com