【題目】某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)
與燒開一壺水所用時(shí)間
的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表中
,
.
![]()
(1)根據(jù)散點(diǎn)圖判斷,
與
哪一個(gè)更適宜作燒水時(shí)間
關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)
的回歸方程類型?(不必說明理由)
(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立
關(guān)于
的回歸方程;
(3)若單位時(shí)間內(nèi)煤氣輸出量
與旋轉(zhuǎn)的弧度數(shù)
成正比,那么,利用第(2)問求得的回歸方程知
為多少時(shí),燒開一壺水最省煤氣?
附:對(duì)于一組數(shù)據(jù)
,其回歸直線
的斜率和截距的最小二乘法估計(jì)值分別為
,![]()
【答案】(1)選取
更合適;(2)
;(3)
時(shí),煤氣用量最小.
【解析】
(1)根據(jù)散點(diǎn)圖的特點(diǎn),可得
更適合;
(2)先建立
關(guān)于
的回歸方程,再得出
關(guān)于
的回歸方程;
(3)寫出函數(shù)關(guān)系,利用基本不等式得出最小值及其成立的條件.
(1)選取
更適宜作燒水時(shí)間
關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)
的回歸方程類型;
(2)![]()
由公式可得:
,
,
所以所求回歸直線方程為:
;
(3)根據(jù)題意,設(shè)
,
則煤氣用量
,
當(dāng)且僅當(dāng)
時(shí),等號(hào)成立,
即
時(shí),煤氣用量最小.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓柱
的一條母線,已知BC過底面圓的圓心O,D是圓O上不與點(diǎn)B、C重合的任意一點(diǎn),![]()
![]()
:
![]()
(1)求直線AC與平面ABD所成角的大小;
(2)求點(diǎn)B到平面ACD的距離;
(3)將四面體ABCD繞母線AB旋轉(zhuǎn)一周,求由
旋轉(zhuǎn)而成的封閉幾何體的體積;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:
焦點(diǎn)F,過點(diǎn)F且斜率為2的直線與拋物線交于A、B兩點(diǎn),且
.
(1)求拋物線E的方程;
(2)設(shè)O是坐標(biāo)原點(diǎn),P,Q是拋物線E上分別位于x軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且![]()
①證明:直線PQ必過定點(diǎn),并求出定點(diǎn)G的坐標(biāo);
②過G作PQ的垂線交拋物線于C,D兩點(diǎn),求四邊形PCQD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正三角形
的邊長(zhǎng)為
,將它沿高
折疊,使點(diǎn)
與點(diǎn)
間的距離為
,則四面體
外接球的表面積為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的圖象在點(diǎn)
處的切線與直線
平行.
(Ⅰ)求函數(shù)
的極值;
(Ⅱ)若對(duì)于
,
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,
是邊長(zhǎng)為4的正三角形,
,
分別為
的中點(diǎn),且
.
![]()
(1)證明:
平面ABC;
(2)求二面角
的余弦值;
(3)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—5:參數(shù)方程選講]
在直角坐標(biāo)系xoy中,曲線
的參數(shù)方程是
(t是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是![]()
(1)求曲線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)若兩曲線交點(diǎn)為A、B,求![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
1
當(dāng)
時(shí),求不等式
的解集;
2
若關(guān)于x的不等式
有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】鄭汴一體化是依托鄭州省會(huì)城市資源優(yōu)勢(shì)發(fā)展開封的省級(jí)戰(zhàn)略,實(shí)施至今,取得了一系列的成就:兩城電信同價(jià),金融同城,鄭開大道全線貫通,城際列車實(shí)常態(tài)化運(yùn)營.隨著鄭汴一體化的深入推進(jìn),很多人認(rèn)為鄭州開封未來有望合并.為了解市民對(duì)鄭汴合并的態(tài)度,現(xiàn)隨機(jī)抽查55人,結(jié)果按年齡分類統(tǒng)計(jì)形成如下表格:
支持 | 反對(duì) | 合計(jì) | |
不足35歲 | 20 | ||
35歲以上 | 30 | ||
合計(jì) | 25 | 55 |
(1)請(qǐng)完成上面的2×2列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為市民對(duì)鄭汴合并的態(tài)度與年齡有關(guān)?
(2)在上述樣木中用分層抽樣的方法,從攴持鄭汴合并的兩組市民中隨機(jī)抽取6人作進(jìn)一步調(diào)查,從這6人中任選2人,求恰有1位“不足35歲”的市民和1位“35歲及以上”的市民的概率.
附:
| 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.814 | 5.024 | 7.879 | 10.828 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com