如圖,四邊形ABCD是菱形,四邊形MADN是矩形,平面MADN
平面ABCD,E,F(xiàn)分別為MA,DC的中點(diǎn),求證:![]()
(1)EF//平面MNCB;
(2)平面MAC
平面BND.
(1) (2)見解析
解析試題分析:(1)取
的中點(diǎn)
,連接
,欲證
平面
,只要證
只要證四邊形
是平行四邊形即可,事實(shí)上,由于
分別是
的中點(diǎn),易知
另一方面又有
,所以FG與ME平行且相等,四邊形
是平行四邊形,問題得證.
(2) 連接
、
,欲證
平面
,只要證
平面
,即證
與平面
內(nèi)的兩條相交直線
、
都垂直;由菱形
易知
;另外,由平面
平面![]()
及矩形
易證
平面
,進(jìn)而有
,所以問題得證.
試題解析:
證明:(1)取
的中點(diǎn)
,連接
,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/15/d/1txwn3.png" style="vertical-align:middle;" />且
,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f5/a/p9oay3.png" style="vertical-align:middle;" />、
分別為
、
的中點(diǎn),
且
, 2分
所以
與
平行且相等,所以四邊形
是平行四邊形,
所以
, 4分
又
平面
,
平面
,
所以
平面
6分
(2)連接
、
,因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic5/tikupic/9c/2/lgedz2.png" style="vertical-align:middle;" />是矩形,
所以
,又因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/e7/1/mcwfb.png" style="vertical-align:middle;" />平面![]()
所以
平面
8分
所以![]()
因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic5/tikupic/2a/e/ecdng1.png" style="vertical-align:middle;" />是菱形,所以![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2d/0/y00zx.png" style="vertical-align:middle;" />,所以![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱柱ABCD—A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點(diǎn).![]()
(1)證明B1C1⊥CE;
(2)求二面角B1CEC1的正弦值;
(3)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為
,求線段AM的長.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,O為AC與BD的交點(diǎn),AB^平面PAD,△PAD是正三角形,
DC//AB,DA=DC=2AB.
(1)若點(diǎn)E為棱PA上一點(diǎn),且OE∥平面PBC,求
的值;
(2)求證:平面PBC^平面PDC.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在直角梯形
中,
,
,且
.
現(xiàn)以
為一邊向梯形外作正方形
,然后沿邊
將正方形
翻折,使平面
與平面
垂直,
為
的中點(diǎn),如圖2.![]()
![]()
(1)求證:
∥平面
;
(2)求證:
;
(3)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在直角梯形
中,
,
,
,點(diǎn)
為
中點(diǎn).將
沿
折起,使平面![]()
平面
,得到幾何體
,如圖2所示.![]()
(1)在
上找一點(diǎn)
,使
平面
;
(2)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四棱錐E
ABCD中,EA=EB,AB∥CD,AB⊥BC,AB=2CD.![]()
(1)求證:AB⊥ED;
(2)線段EA上是否存在點(diǎn)F,使DF∥平面BCE?若存在,求出
;若不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com