【題目】某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷,凡在該超市購(gòu)物滿400元的顧客,將獲得一次摸獎(jiǎng)機(jī)會(huì),規(guī)則如下:獎(jiǎng)盒中放有除顏色外完全相同的1個(gè)紅球,1個(gè)黃球,1個(gè)白球和1個(gè)黑球顧客不放回的每次摸出1個(gè)球,若摸到黑球則停止摸獎(jiǎng),否則就繼續(xù)摸球規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì)
(1)求1名顧客摸球2次停止摸獎(jiǎng)的概率:
(2)記
為1名顧客5次摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量
的分布列和數(shù)學(xué)期望
【答案】(1)
(2)詳見解析
【解析】
(1)由題意可得第二次摸到黑球,第一次為其它球,求出概率;
(2)先求出摸獎(jiǎng)一次獲得的的獎(jiǎng)金數(shù)額,再求5次的數(shù)額,求出相應(yīng)的概率,進(jìn)而求出分布列,及期望.
(1)由題意可得第一次是紅黃白中的一個(gè),概率為
,
不放回的第二次為黑球,是從剩余的3個(gè)球中摸出黑色的球,概率為
,
所以1名顧客摸球2次停止摸獎(jiǎng)的概率為
;
(2)顧客摸獎(jiǎng)一次獲得的獎(jiǎng)金數(shù)額設(shè)為
,
的可能取值0,10,20,30,40,
則
,
,
,
,
;
所以1名顧客5次摸獎(jiǎng)獲得獎(jiǎng)金數(shù)額
的分布列為
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
所以隨機(jī)變量
的期望
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】1642年,帕斯卡發(fā)明了一種可以進(jìn)行十進(jìn)制加減法的機(jī)械計(jì)算機(jī)
年,萊布尼茨改進(jìn)了帕斯卡的計(jì)算機(jī),但萊布尼茲認(rèn)為十進(jìn)制的運(yùn)算在計(jì)算機(jī)上實(shí)現(xiàn)起來過于復(fù)雜,隨即提出了“二進(jìn)制”數(shù)的概念
之后,人們對(duì)進(jìn)位制的效率問題進(jìn)行了深入的研究
研究方法如下:對(duì)于正整數(shù)
,
,我們準(zhǔn)備
張不同的卡片,其中寫有數(shù)字0,1,…,
的卡片各有
張
如果用這些卡片表示
位
進(jìn)制數(shù),通過不同的卡片組合,這些卡片可以表示
個(gè)不同的整數(shù)
例如
,
時(shí),我們可以表示出
共
個(gè)不同的整數(shù)
假設(shè)卡片的總數(shù)
為一個(gè)定值,那么
進(jìn)制的效率最高則意味著
張卡片所表示的不同整數(shù)的個(gè)數(shù)
最大
根據(jù)上述研究方法,幾進(jìn)制的效率最高?
![]()
A. 二進(jìn)制 B. 三進(jìn)制 C. 十進(jìn)制 D. 十六進(jìn)制
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人設(shè)計(jì)一項(xiàng)單人游戲,規(guī)則如下:先將一棋子放在如圖所示正方形
(邊長(zhǎng)為2個(gè)單位)的頂點(diǎn)
處,然后通過擲骰子來確定棋子沿正方形的邊按逆時(shí)針方向行走的單位,如果擲出的點(diǎn)數(shù)為
,則棋子就按逆時(shí)針方向行走
個(gè)單位,一直循環(huán)下去.則某人拋擲三次骰子后棋子恰好又回到點(diǎn)
處的所有不同走法共有( )
![]()
A. 22種 B. 24種 C. 25種 D. 27種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,其中
.
(1)當(dāng)
時(shí),求
的單調(diào)區(qū)間;
(2)若存在
,使得不等式
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】物線
的焦點(diǎn)為
,已知點(diǎn)
為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足
,過弦
的中點(diǎn)
作該拋物線準(zhǔn)線的垂線
,垂足為
,則
的最小值為
![]()
A.
B. 1 C.
D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
在
上的單調(diào)性;
(2)若
,當(dāng)
時(shí),
,且
有唯一零點(diǎn),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定下列四個(gè)命題
若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;
若一條直線和兩個(gè)互相垂直的平面中的一個(gè)平面垂直,那么這條直線一定平行于另一個(gè)平面;
若一條直線和兩個(gè)平行平面中的一個(gè)平面垂直,那么這條直線也和一個(gè)平面垂直;
若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直,
其中,真命題的個(gè)數(shù)是
![]()
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如右圖所示,一座圓拱(圓的一部分)橋,當(dāng)水面在圖位置m時(shí),拱頂離水面2 m,水面寬 12 m,當(dāng)水面下降1 m后,水面寬多少米?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)中僅有一人申請(qǐng)了北京大學(xué)的自主招生考試,當(dāng)他們被問到誰申請(qǐng)了北京大學(xué)的自主招生考試時(shí),甲說:“丙或丁申請(qǐng)了”;乙說:“丙申請(qǐng)了”;丙說:“甲和丁都沒有申請(qǐng)”;丁說:“乙申請(qǐng)了”,如果這四位同學(xué)中只有兩人說的是對(duì)的,那么申請(qǐng)了北京大學(xué)的自主招生考試的同學(xué)是______.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com