【題目】如圖,四邊形ABCD是正方形,PA
平面ABCD,EB//PA,AB=PA=4,EB=2,F(xiàn)為PD的中點(diǎn).
![]()
(1)求證AF
PC
(2)BD//平面PEC
(3)求二面角D-PC-E的大小
【答案】(1)見(jiàn)解析; (2)見(jiàn)解析; (3)150°.
【解析】
(1)依題意,PA⊥平面ABCD.以A為原點(diǎn),分別以
、
、
的方向?yàn)?/span>x軸、y軸、z軸的正方向建立空間直角坐標(biāo)系,利用向量法能證明AF⊥PC.
(2)取PC的中點(diǎn)M,連接EM.推導(dǎo)出BD∥EM,由此能證明BD∥平面PEC.
(3)由AF⊥PD,AF⊥PC,得AF⊥平面PCD,求出平面PCD的一個(gè)法向量和平面PCE的法向量,利用向量法能求出二面角D﹣PC﹣E的大小.
(1)依題意,
平面ABCD,如圖,以A為原點(diǎn),分別以
的方向?yàn)閤軸、y軸、z軸的正方向建立空間直角坐標(biāo)系。
依題意,可得
A(0,0,0),B(0,4,0),C(4,4,0),D(4,0,0),
P(0,0,4),E(0,4,2),F(xiàn)(2,0,2)
∵
,
,
∴
,∴.
.
(2)取PC的中點(diǎn)M,連接EM.
∵
,
,![]()
∴
,∴
.
∵
平面PEC,
平面PEC,
∴BD//平面PEC.
(3)因?yàn)?/span>AF⊥PD,AF⊥PC,PD∩PC=P,
所以AF⊥平面PCD,故
為平面PCD的一個(gè)法向量.
設(shè)平面PCE的法向量為
,
因?yàn)?/span>
,
,
所以
即![]()
令y=﹣1,得x=﹣1,z=﹣2,故
.
所以
,
所以二面角D﹣PC﹣E的大小為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1) 求
的單調(diào)區(qū)間;
(2) 討論
在
上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)均為4的三棱柱
中,
分別是
和
的中點(diǎn).
![]()
(1)求證:
平面![]()
(2)若平面
平面
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計(jì) | M | 1 |
![]()
(1)求出表中M,p及圖中a的值;
(2)若該校高一學(xué)生有360人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,請(qǐng)列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
,圓
,點(diǎn)
是圓上一動(dòng)點(diǎn),
的垂直平分線與
交于點(diǎn)
.
(1)求點(diǎn)
的軌跡方程;
(2)設(shè)點(diǎn)
的軌跡為曲線
,過(guò)點(diǎn)
且斜率不為0的直線
與
交于
兩點(diǎn),點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,證明直線
過(guò)定點(diǎn),并求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在各棱長(zhǎng)均為
的三棱柱
中,側(cè)面
底面
,
.
![]()
(1)求側(cè)棱
與平面
所成角的正弦值的大小;
(2)已知點(diǎn)
滿足
,在直線
上是否存在點(diǎn)
,使
平面
?若存在,請(qǐng)確定點(diǎn)
的位置,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
(
,且
為常數(shù)).
(1)求
的單調(diào)區(qū)間;
(2)若
在區(qū)間
內(nèi),存在
且
時(shí),使不等式
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐
的底面是邊長(zhǎng)為2的菱形,
底面
.
![]()
(1)求證:
平面
;
(2)若
,直線
與平面
所成的角為
,求四棱錐
的體積.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com