【題目】計(jì)劃在某水庫建一座至多安裝4臺發(fā)電機(jī)的水電站,過去50年的水文資料顯示,水庫年入流量X(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和,單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不足120的年份有30年,不低于120且不足160的年份有8年,不低于160的年份有2年,將年入流量在以上四段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨(dú)立.
(1)求在未來3年中,至多1年的年入流量不低于120的概率;
(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺數(shù)受年入流量X的限制,并有如下關(guān)系:
年入流量X |
|
|
|
|
發(fā)電機(jī)最多可運(yùn)行臺數(shù) | 1 | 2 | 3 | 4 |
若某臺發(fā)電機(jī)運(yùn)行,則該臺發(fā)電機(jī)年利潤為5000萬元;若某臺發(fā)電機(jī)未運(yùn)行,則該臺發(fā)電機(jī)年虧損1500萬元,水電站計(jì)劃在該水庫安裝2臺或3臺發(fā)電機(jī),你認(rèn)為應(yīng)安裝2臺還是3臺發(fā)電機(jī)?請說明理由.
【答案】(1)
;(2)2臺,理由見解析
【解析】
(1)利用二項(xiàng)分布概率計(jì)算公式,求得至多
年的年入流量不低于
的概率.
(2)分別求得安裝
臺、
臺發(fā)電機(jī)的利潤的期望值,由此確定安裝發(fā)動機(jī)的臺數(shù).
(1)依題意:
,
,
,
.
所以年入流量不低于120的概率為![]()
由二項(xiàng)分布,在未來3年中,至多1年的年入流量不低于120的概率為:
.
(2)記水電站的總利潤為
(單位:萬元)
①若安裝2臺發(fā)電機(jī)的情形:
| 3500 | 10000 |
|
|
|
![]()
②若安裝3臺發(fā)電機(jī)的情形:
| 2000 | 8500 | 15000 |
|
|
|
|
![]()
因?yàn)?/span>
,故應(yīng)安裝2臺發(fā)電機(jī).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)
個紅包,每個紅包金額為
元,
.已知在每輪游戲中所產(chǎn)生的
個紅包金額的頻率分布直方圖如圖所示.
![]()
(1)求
的值,并根據(jù)頻率分布直方圖,估計(jì)紅包金額的眾數(shù);
(2)以頻率分布直方圖中的頻率作為概率,若甲、乙、丙三人從中各搶到一個紅包,其中金額在
的紅包個數(shù)為
,求
的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生對函數(shù)
的性質(zhì)進(jìn)行研究,得出如下的結(jié)論:
函數(shù)在
上單調(diào)遞減,在
上單調(diào)遞增;
點(diǎn)
是函數(shù)圖象的一個對稱中心;
函數(shù)圖象關(guān)于直線
對稱;
存在常數(shù)
,使
對一切實(shí)數(shù)x均成立,
其中正確命題的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各命題中正確命題的序號是( )
① “若
都是奇數(shù),則
是偶數(shù)”的逆否命題是“
不是偶數(shù),則
都不是奇數(shù)”;
② 命題“
”的否定是“
” ;
③ “函數(shù)
的最小正周期為
” 是“
”的必要不充分條件;
④“平面向量
與
的夾角是鈍角”的充分必要條件是“
”
A. ①②B. ③④C. ②③D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
中,
,
,
分別為
,
邊的中點(diǎn),以
為折痕把
折起,使點(diǎn)
到達(dá)點(diǎn)
的位置,且
.
![]()
(1)證明:
平面
;
(2)求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體
中,側(cè)面
是正方形,
是等腰直角三角形,點(diǎn)
是正方形
對角線的交點(diǎn)
,
且
.
![]()
(1)證明:
平面
;
(2)若側(cè)面
與底面
垂直,求五面體
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|+2|x﹣m|
(1)當(dāng)m=2時,求f(x)≤9的解集;
(2)若f(x)≤2的解集不是空集,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,底面
為梯形,
底面
,
,
,
,
.
![]()
(1)求證:平面
平面
;
(2)設(shè)
為
上的一點(diǎn),滿足
,若直線
與平面
所成角的正切值為
,求二面角
的余弦值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com