數(shù)列
是遞增的等差數(shù)列,且
,
.
(1)求數(shù)列
的通項(xiàng)公式;
(2)求數(shù)列
的前
項(xiàng)和
的最小值;
(3)求數(shù)列
的前
項(xiàng)和
.
(1)
;(2)
;(3)
.
解析試題分析:(1)這是等差數(shù)列的基礎(chǔ)題型,可直接利用基本量(列出關(guān)于
的方程組)求解,也可利用等差數(shù)列的性質(zhì)
,這樣可先求出
,然后再求出
,得通項(xiàng)公式;(2)等差數(shù)列的前
和
是關(guān)于
的二次函數(shù)的形式,故可直接求出
,然后利用二次函數(shù)的知識(shí)得到最小值,當(dāng)然也可根據(jù)數(shù)列的特征,本題等差數(shù)列是首項(xiàng)為負(fù)且遞增的數(shù)列,故可求出符合
的
的最大值,這個(gè)最大值
就使得
最小(如果
,則
和
都使
最小);(3)由于
前幾項(xiàng)為負(fù),后面全為正,故分類求解(目的是根據(jù)絕對(duì)值定義去掉絕對(duì)值符號(hào)),特別是
時(shí),![]()
,這樣可利用第(2)題的結(jié)論快速得出結(jié)論.
試題解析:(1) 由![]()
,得
、
是方程
的二個(gè)根,![]()
,
,此等差數(shù)列為遞增數(shù)列,![]()
,
,公差
,
.
4分
(2)![]()
,
,![]()
8分
(3)由
得
,解得
,此數(shù)列前四項(xiàng)為負(fù)的,第五項(xiàng)為0,從第六項(xiàng)開始為正的. 10分
當(dāng)
且
時(shí),
. 12分
當(dāng)
且
時(shí),![]()
. 14分
考點(diǎn):(1)等差數(shù)列的通項(xiàng)公式;(2)等差數(shù)列的前
項(xiàng)和公式;(3)絕對(duì)值與分類討論.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=
(x>0),數(shù)列{an}滿足a1=1,an=f
(n∈N*,且n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1·anan+1,若Tn≥tn2對(duì)n∈N*恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
滿足
,
,
.
(1)若
成等比數(shù)列,求
的值;
(2)是否存在
,使數(shù)列
為等差數(shù)列?若存在,求出所有這樣的
;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知{an}是一個(gè)公差大于0的等差數(shù)列,且滿足a3a5=45,a2+a6=14.
(I)求{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足:
…
,求{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知集合
,對(duì)于數(shù)列
中
.
(Ⅰ)若三項(xiàng)數(shù)列
滿足
,則這樣的數(shù)列
有多少個(gè)?
(Ⅱ)若各項(xiàng)非零數(shù)列
和新數(shù)列
滿足首項(xiàng)
,
(
),且末項(xiàng)
,記數(shù)列
的前
項(xiàng)和為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
滿足
,
,
,
是數(shù)列
的前
項(xiàng)和.
(1)若數(shù)列
為等差數(shù)列.
(ⅰ)求數(shù)列的通項(xiàng)
;
(ⅱ)若數(shù)列
滿足
,數(shù)列
滿足
,試比較數(shù)列
前
項(xiàng)和
與
前
項(xiàng)和
的大小;
(2)若對(duì)任意
,
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}是首項(xiàng)為-1,公差d
0的等差數(shù)列,且它的第2、3、6項(xiàng)依次構(gòu)成等比數(shù)列{bn}的前3項(xiàng)。
(1)求{an}的通項(xiàng)公式;
(2)若Cn=an·bn,求數(shù)列{Cn}的前n項(xiàng)和Sn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列
的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項(xiàng)都不相等的等差數(shù)列
的前6項(xiàng)和為60,且
為
和
的等比中項(xiàng).
( I ) 求數(shù)列
的通項(xiàng)公式;
(II) 若數(shù)列
滿足
,且
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com