【題目】在下列網格圖中,每個小正方形的邊長均為1個單位.在Rt△ABC中,∠C=90°,AC=3,BC=4.
![]()
(1)試在圖中做出△ABC以A為旋轉中心,沿順時針方向旋轉90°后的圖形△AB1C1;
(2)若點B的坐標為(﹣3,5),試在圖中畫出直角坐標系,并標出A、C兩點的坐標;
(3)根據(2)的坐標系作出與△ABC關于原點對稱的圖形△A2B2C2,并標出B2、C2兩點的坐標.
科目:初中數學 來源: 題型:
【題目】某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)
![]()
(1)若商店計劃銷售完這批商品后能獲利1 100元,請問甲、乙兩種商品應分別購進多少件?
(2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并指出獲利最大的購貨方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題3分+3分+3分=9分)
如圖,在方格紙內將三角形ABC經過平移后得到三角形A′B′C′,圖中標出了點B的對應點B′,解答下列問題.
![]()
(1)過C點畫AB的垂線MN;
(2)在給定方格紙中畫出平移后的三角形A′B′C′;
(3)寫出三角形ABC平移的一種具體方法.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】平面直角坐標系內的一條直線同時滿足下列兩個條件:①不經過第四象限;②與兩條坐標軸所圍成的三角形的面積為2,這條直線的解析式可以是_________(寫出一個解析式即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【問題情境】
如圖1,四邊形ABCD是正方形,M是BC邊上的一點,E是CD邊的中點,AE平分∠DAM.
![]()
【探究展示】
(1)證明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.
【拓展延伸】
(3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結論是否成立?請分別作出判斷,不需要證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】互聯網“微商”經營已成為大眾創業新途徑,某微信平臺上一件商品標價為200元,按標價的五折銷售,仍可獲利25%元,則這件商品的進價為_______元.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了打造區域中心城市,實現跨越式發展,我市新區建設正按投資計劃有序推進.新區建設工程部,因道路建設需要開挖土石方,計劃每小時挖掘土石方540m3,現決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關信息如表:
![]()
(1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?
(2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有幾種不同的租用方案?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com