【題目】如圖,函數
的圖象過點
.
求該函數的解析式;
過點
分別向
軸和
軸作垂線,垂足為
和
,求四邊形
的面積;
求證:過此函數圖象上任意一點分別向
軸和
軸作垂線,這兩條垂線與兩坐標軸所圍成矩形的面積為定值.
![]()
科目:初中數學 來源: 題型:
【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關系.
(1)L1表示哪輛汽車到甲地的距離與行駛時間的關系?
(2)汽車B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車的s與t的關系式.
(4)2小時后,兩車相距多少千米?
(5)行駛多長時間后,A、B兩車相遇?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“綠水青山就是金山銀山”,為保護生態環境,A,B兩村準備各自清理所屬區域養魚網箱和捕魚網箱,每村參加清理人數及總開支如下表:
村莊 | 清理養魚網箱人數/人 | 清理捕魚網箱人數/人 | 總支出/元 |
A | 15 | 9 | 57000 |
B | 10 | 16 | 68000 |
(1)若兩村清理同類漁具的人均支出費用一樣,求清理養魚網箱和捕魚網箱的人均支出費用各是多少元;
(2)在人均支出費用不變的情況下,為節約開支,兩村準備抽調40人共同清理養魚網箱和捕魚網箱,要使總支出不超過102000元,且清理養魚網箱人數小于清理捕魚網箱人數,則有哪幾種分配清理人員方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
在學習《圓》這一章時,老師給同學們布置了一道尺規作圖題:
尺規作圖:過圓外一點作圓的切線.
已知:P為⊙O外一點.
求作:經過點P的⊙O的切線.
小敏的作法如下:如圖,
![]()
(1)連接OP,作線段OP的垂直平分線MN交OP于點C.
(2)以點C為圓心,CO的長為半徑作圓,交⊙O于A,B兩點.
(3)作直線PA,PB.
老師認為小敏的作法正確.
請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據是 ;由此可證明直線PA,PB都是⊙O的切線,其依據是 .請寫出證明過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】等邊三角形ABC 中,BD是角平分線,點E在BC邊的延長線上,且CD=CE,則∠BDE的度數是( )
![]()
A.90°B.100°C.120°D.無法確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=2,點M為正方形ABCD的邊CD上的動點(與點C,D不重合),連接BM,作MF⊥BM,與正方形ABCD的外角∠ADE的平分線交于點F.設CM=x,△DFM的面積為y,則y與x之間的函數關系式為________________.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列方程解應用題:某商場經市場調查,預計一款夏季童裝能獲得市場青睞,便花費15000元購進了一批此款童裝,上市后很快售罄.該店決定繼續進貨,由于第二批進貨數量是第一批進貨數量的2倍,因此單價便宜了10元,購進第二批童裝一共花費了27000元.那該店所購進的第一批童裝的價格是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點是點A(3,0),其部分圖象如圖,則下列結論:
①2a+b=0;
②b2﹣4ac<0;
③一元二次方程ax2+bx+c=0(a≠0)的另一個解是x=﹣1;
④點(x1,y1),(x2,y2)在拋物線上,若x1<0<x2,則y1<y2.
其中正確的結論是_____(把所有正確結論的序號都填在橫線上)
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題6分)如圖,已知△ABC,∠C=Rt∠,AC<BC,D為BC上一點,且到A,B兩點的距離相等.
![]()
(1)用直尺和圓規,作出點D的位置(不寫作法,保留作圖痕跡);
(2)連結AD,若∠B=37°,求∠CAD的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com