【題目】如圖,在△ABC中,AB=AC=13,DE是△ABC的中位線,F(xiàn)是DE的中點(diǎn),已知B(-1,0),C(9,0),則點(diǎn)F的坐標(biāo)為______________.
![]()
【答案】(4,6)
【解析】如圖,延長AF交BC于點(diǎn)G.易證DF是△ABG的中位線,由三角形中位線定理可以求得點(diǎn)F的坐標(biāo).
解:如圖,延長AF交BC于點(diǎn)G.
![]()
∵B(-1,0),C(9,0),
∴BC=10.
∵AB=AC=13,DE是△ABC的中位線,F是DE的中點(diǎn),
∴AG⊥BC,則BG=CG=5.
∴G(4,0)
∴在直角△ABG中,由勾股定理得
AG=
=12.
則F(4,6).
故答案是:(4,6).
“點(diǎn)睛”本題考查了三角形中位線定理和坐標(biāo)與圖形性質(zhì).利用勾股定理求得AG的長度是解題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
![]()
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點(diǎn),以O(shè)為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點(diǎn)C,則圖中陰影部分的面積為 . ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,Rt△ABC的三個頂點(diǎn)分別為A(-2,2),B(0,5),C(0,2).
(1)畫△
,使它與△ABC關(guān)于點(diǎn)C成中心對稱;
(2)平移△ABC,使點(diǎn)A的對應(yīng)點(diǎn)A2坐標(biāo)為(-2,-6),畫出平移后對應(yīng)的
;
(3)若將
繞某一點(diǎn)旋轉(zhuǎn)可得到
,則旋轉(zhuǎn)中心的坐標(biāo)為 _____________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,線段AB和射線BM交于點(diǎn)B.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)
①在射線BM上作一點(diǎn)C,使AC=AB;
②作∠ABM 的角平分線交AC于D點(diǎn);
③在射線CM上作一點(diǎn)E,使CE=CD,連接DE.
![]()
(2)在(1)所作的圖形中,猜想線段BD與DE的數(shù)量關(guān)系,并證明之.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點(diǎn)C在線段AB上,線段AC=10厘米,BC=6厘米,點(diǎn)M,N分別是AC,BC的中點(diǎn).
![]()
(1)求線段MN的長度;
(2)根據(jù)第(1)題的計(jì)算過程和結(jié)果,設(shè)AC+BC=a,其他條件不變,求MN的長度;
(3)動點(diǎn)P、Q分別從A、B同時出發(fā),點(diǎn)P以2cm/s的速度沿AB向右運(yùn)動,終點(diǎn)為B,點(diǎn)Q以1cm/s的速度沿AB向左運(yùn)動,終點(diǎn)為A,當(dāng)一個點(diǎn)到達(dá)終點(diǎn),另一個點(diǎn)也隨之停止運(yùn)動,求運(yùn)動多少秒時,C、P、Q三點(diǎn)有一點(diǎn)恰好是以另兩點(diǎn)為端點(diǎn)的線段的中點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=﹣
x2+bx+c表示,且拋物線的點(diǎn)C到墻面OB的水平距離為3m時,到地面OA的距離為
m. ![]()
(1)求該拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;
(2)一輛貨運(yùn)汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明在山腳下的A處測得山頂N的仰角為45°,此時,他剛好與山底D在同一水平線上.然后沿著坡度為30°的斜坡正對著山頂前行110米到達(dá)B處,測得山頂N的仰角為60°.求山的高度.(結(jié)果精確到1米,參考數(shù)據(jù):
≈1.414,
≈1.732).![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m﹣1)x+m2=0有兩個實(shí)數(shù)根x1和x2 .
(1)求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x12﹣x22=0時,求m的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com