【題目】如圖,C為線段AD上一點(diǎn),點(diǎn)B為CD的中點(diǎn),且AD=8cm,BD=2cm.
![]()
(1)求AC的長(zhǎng)
(2)若點(diǎn)E在直線AD上,且EA=3cm,求BE的長(zhǎng)
【答案】(1)4cm;(2)9cm 或3cm
【解析】
(1)根據(jù)線段中點(diǎn)的意義求得CD的長(zhǎng),再根據(jù)線段的和差求得答案;
(2)由于沒(méi)有明確點(diǎn)E的位置,故需分類討論:當(dāng)E在點(diǎn)A的左邊和當(dāng)E在點(diǎn)A的右邊時(shí)即可解決問(wèn)題.
(1)∵點(diǎn)B為CD的中點(diǎn)
∴CD=2BD
∵BD=2cm
∴CD=4cm
∵AC=AD-CD且AD=8cm,CD=4cm
∴AC=4cm
(2)當(dāng)E在點(diǎn)A的左邊時(shí)
則BE=BA+EA且BA=6cm,EA=3cm
∴BE=9cm
當(dāng)E在點(diǎn)A的右邊時(shí)
則BE=AB-EA且AB=6cm,EA=3cm
∴BE=3cm
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,觀察函數(shù)y=|x|的圖象,寫出它的兩條的性質(zhì);
(2)在圖1中,畫出函數(shù)y=|x-3|的圖象;
根據(jù)圖象判斷:函數(shù)y=|x-3|的圖象可以由y=|x|的圖象向 平移 個(gè)單位得到;
(3)①函數(shù)y=|2x+3|的圖象可以由y=|2x|的圖象向 平移 單位得到;
②根據(jù)從特殊到一般的研究方法,函數(shù)y=|kx+3|(k為常數(shù),k≠0)的圖象可以由函數(shù)y=|kx|(k為常數(shù),k≠0)的圖象經(jīng)過(guò)怎樣的平移得到.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)假設(shè)每臺(tái)冰箱降價(jià)x元,商場(chǎng)每天銷售這種冰箱的利潤(rùn)是y元,請(qǐng)寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場(chǎng)要想在這種冰箱銷售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在Rt△ABC中,∠C=90°,AB=10,BC=6,點(diǎn)P從點(diǎn)A出發(fā),沿折線AB﹣BC向終點(diǎn)C運(yùn)動(dòng),在AB上以每秒5個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),在BC上以每秒3個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),沿CA方向以每秒
個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),P,Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P停止時(shí),點(diǎn)Q也隨之停止.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)求線段AQ的長(zhǎng);(用含t的代數(shù)式表示)
(2)連結(jié)PQ,當(dāng)PQ與△ABC的一邊平行時(shí),求t的值;
(3)如圖②,過(guò)點(diǎn)P作PE⊥AC于點(diǎn)E,以PE,EQ為鄰邊作矩形PEQF.設(shè)矩形PEQF與△ABC重疊部分圖形的面積為S.直接寫出點(diǎn)P在運(yùn)動(dòng)過(guò)程中S與t之間的函數(shù)關(guān)系式和自變量的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,
的
所對(duì)邊分別是
,且
,若滿足
,則稱
為奇異三角形,例如等邊三角形就是奇異三角形.
(1)若
,判斷
是否為奇異三角形,并說(shuō)明理由;
(2)若
,
,求
的長(zhǎng);
(3)如圖2,在奇異三角形
中,
,點(diǎn)
是
邊上的中點(diǎn),連結(jié)
,
將
分割成2個(gè)三角形,其中
是奇異三角形,
是以
為底的等腰三角形,求
的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形
中,
,點(diǎn)
,
分別在
、
上,
,
,
相交于點(diǎn)
,若圖中陰影部分的面積與正方形
的面積之比為
,則
的周長(zhǎng)為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
的邊
上有一動(dòng)點(diǎn)
,從距離
點(diǎn)
的點(diǎn)
處出發(fā),沿線段
,射線
運(yùn)動(dòng),速度為
;動(dòng)點(diǎn)
從點(diǎn)
出發(fā),沿射線
運(yùn)動(dòng),速度為
.
,
同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間是
.
![]()
(1)當(dāng)點(diǎn)
在
上運(yùn)動(dòng)時(shí),
(用含
的代數(shù)式表示);
(2)當(dāng)點(diǎn)
在
上運(yùn)動(dòng)時(shí),
為何值,能使
?
(3)若點(diǎn)
運(yùn)動(dòng)到距離
點(diǎn)
的點(diǎn)
處停止,在點(diǎn)
停止運(yùn)動(dòng)前,點(diǎn)
能否追上點(diǎn)
?如果能,求出
的值;如果不能,請(qǐng)說(shuō)出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示的數(shù)a、點(diǎn)B表示數(shù)b,a、b滿足|a﹣30|+(b+6)2=0.點(diǎn)O是數(shù)軸原點(diǎn).
![]()
(1)點(diǎn)A表示的數(shù)為 ,點(diǎn)B表示的數(shù)為 ,線段AB的長(zhǎng)為 .
(2)若點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,請(qǐng)?jiān)跀?shù)軸上找一點(diǎn)C,使AC=2BC,則點(diǎn)C在數(shù)軸上表示的數(shù)為 .
(3)現(xiàn)有動(dòng)點(diǎn)P、Q都從B點(diǎn)出發(fā),點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)A移動(dòng);當(dāng)點(diǎn)P移動(dòng)到O點(diǎn)時(shí),點(diǎn)Q才從B點(diǎn)出發(fā),并以每秒3個(gè)單位長(zhǎng)度的速度向右移動(dòng),且當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)Q就停止移動(dòng),設(shè)點(diǎn)P移動(dòng)的時(shí)間為t秒,問(wèn):當(dāng)t為多少時(shí),P、Q兩點(diǎn)相距4個(gè)單位長(zhǎng)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD.點(diǎn)E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.下列結(jié)論:①△AED≌△DFB; ②S四邊形BCDG=
CG2;③DE=CG;④若AF=2DF,則BG=6GF.其中正確的結(jié)論_____________.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com