分析 分兩種情形①當PA=PC時,設PA=PC=x,在Rt△PBC中,構建PC2=BP2+BC2,可得x2=32+(4-x)2,求出x即可解決問題.②當AP=AC時,AC=$\sqrt{{3}^{2}+{4}^{2}}$=5,可得AP=5,PM=AM=$\frac{5}{2}$,由此即可求出BM.
解答 解:
①當PA=PC時,設PA=PC=x,
在Rt△PBC中,∵PC2=BP2+BC2,
∴x2=32+(4-x)2,
∴x=$\frac{25}{8}$,
∴PM=AM=$\frac{1}{2}$PA=$\frac{25}{16}$,
∴BM=AB-AM=4-$\frac{25}{16}$=$\frac{39}{16}$
②當AP=AC時,
∵AC=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴AP=5,
∴PM=AM=$\frac{5}{2}$,
∴BM=AB=AM=4-$\frac{5}{2}$=$\frac{3}{2}$,
故答案為$\frac{39}{16}$或$\frac{3}{2}$.
點評 本題考查翻折變換、矩形的性質、等腰三角形的性質、勾股定理等知識,解題的關鍵是學會用分類討論的思想思考問題,屬于中考?碱}型.
科目:初中數學 來源: 題型:選擇題
| A. | m6÷m2=m3 | B. | 3m3-2m2=m | C. | (3m2)3=27m6 | D. | $\frac{1}{2}$m•2m2=m2 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com