【題目】如圖①,將邊長(zhǎng)為2的正方形OABC如圖①放置,O為原點(diǎn). (Ⅰ)若將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°時(shí),如圖②,求點(diǎn)A的坐標(biāo);
(Ⅱ)如圖③,若將圖①中的正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)75°時(shí),求點(diǎn)B的坐標(biāo).![]()
【答案】解:(Ⅰ)過(guò)點(diǎn)A作x軸的垂線(xiàn),垂足為D,∠ADO=90°, ![]()
∵旋轉(zhuǎn)角為60°,
∴∠AOD=90°﹣60°=30°,
∴AD=
AO=1,DO=
,
∴A(﹣
,1);
(Ⅱ)連接BO,過(guò)B作BD⊥y軸于D,![]()
∵旋轉(zhuǎn)角為75°,∠AOB=45°,
∴∠BOD=75°﹣45°=30°,
∵∠A=90°,AB=AO=2,
∴BO=2
,
∴Rt△BOD中,BD=
,OD=
,
∴B(﹣
,
).
【解析】(1)過(guò)點(diǎn)A作x軸的垂線(xiàn),垂足為D,∠ADO=90°,根據(jù)旋轉(zhuǎn)角得出∠AOD=30°,進(jìn)而得到AD=
AO=1,DO=
,據(jù)此可得點(diǎn)A的坐標(biāo);(2)連接BO,過(guò)B作BD⊥y軸于D,根據(jù)旋轉(zhuǎn)角為75°,可得∠BOD=30°,根據(jù)勾股定理可得BO=2
,再根據(jù)Rt△BOD中,BD=
,OD=
,可得點(diǎn)B的坐標(biāo).
【考點(diǎn)精析】利用勾股定理的概念和正方形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每條對(duì)角線(xiàn)平分一組對(duì)角;正方形的一條對(duì)角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線(xiàn)與邊的夾角是45o;正方形的兩條對(duì)角線(xiàn)把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為50的⊙O中,弦AB的長(zhǎng)為50, ![]()
(1)求∠AOB的度數(shù);
(2)求點(diǎn)O到AB的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)題意解答 ![]()
(1)如圖1,如果ɑ,β都為銳角,且tanɑ=
,tanβ=
,則ɑ+β=;
(2)如果ɑ,β都為銳角,當(dāng)tanɑ=5,tanβ=
時(shí),在圖2的正方形網(wǎng)格中,利用已作出的銳角ɑ,畫(huà)出∠MON , 使得∠MON=ɑ﹣β.此時(shí)ɑ﹣β=度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)
是反比例函數(shù)
的圖像上的一個(gè)動(dòng)點(diǎn),經(jīng)過(guò)點(diǎn)
的直線(xiàn)
交
軸負(fù)半軸于點(diǎn)
,交
軸正半軸于點(diǎn)
.過(guò)點(diǎn)
作
軸的垂線(xiàn),交反比例函數(shù)的圖像于點(diǎn)
.過(guò)點(diǎn)
作
軸于點(diǎn)
,交
于點(diǎn)
,連接
.設(shè)點(diǎn)
的橫坐標(biāo)是
.
(1)若
,求點(diǎn)
的坐標(biāo)(用含
的代數(shù)式表示);
(2)若
,當(dāng)四邊形
是平行四邊形時(shí),求
的值,并求出此時(shí)直線(xiàn)
對(duì)應(yīng)的函數(shù)表達(dá)式.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)所示,∠AOB、∠COD都是直角.
![]()
(1)試猜想∠AOD與∠COB在數(shù)量上是相等,互余,還是互補(bǔ)的關(guān)系.請(qǐng)你用推理的方法說(shuō)明你的猜想是合理的.
(2)當(dāng)∠COD繞著點(diǎn)O旋轉(zhuǎn)到圖(2)所示位置時(shí),你在(1)中的猜想還成立嗎?請(qǐng)你證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上A點(diǎn)表示數(shù)a,B點(diǎn)表示數(shù)b,AB表示A點(diǎn)和B點(diǎn)之間的距離,C是AB的中點(diǎn),且a、b滿(mǎn)足|a+3|+(b+3a)2=0
(1)求點(diǎn)C表示的數(shù):
(2)點(diǎn)P從A點(diǎn)以3個(gè)單位每秒向右運(yùn)動(dòng),點(diǎn)Q同時(shí)從B點(diǎn)以2個(gè)單位每秒向左運(yùn)動(dòng)
(i)當(dāng)P、Q兩點(diǎn)在數(shù)軸上D點(diǎn)相遇時(shí),求此時(shí)C、D兩點(diǎn)之間的距離;
(ii),若AP+BQ=2PQ,求時(shí)間t.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=ax2+bx+c的圖像如圖所示,則下列結(jié)論:
①abc>0;②a+b+c=2;③b>1;④a<
.
其中正確的結(jié)論是( )![]()
A.①②
B.②③
C.③④
D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地下車(chē)庫(kù)出口處安裝了“兩段式欄桿”,如圖1所示,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),點(diǎn)E是欄桿兩段的聯(lián)結(jié)點(diǎn).當(dāng)車(chē)輛經(jīng)過(guò)時(shí),欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計(jì)),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么適合該地下車(chē)庫(kù)的車(chē)輛限高標(biāo)志牌為( )(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com