【題目】如圖,已知直線y=﹣
x+3與x軸、y軸分別交于A、C,以OA、OC為邊在第一象限內(nèi)作長方形OABC.
![]()
(1)將△ABC沿B′D對折,使得點(diǎn)A與點(diǎn)C重合,折痕交AB于點(diǎn)D,求直線CD的解析式;
(2)若在x軸上存在點(diǎn)P,使△ADP為等腰三角形,求出符合條件的點(diǎn)P坐標(biāo).
【答案】(1)y=﹣
x+3;(2)P點(diǎn)的坐標(biāo)是(﹣
,0)或(
,0)
【解析】
(1)已知直線y=﹣2x+8與x軸、y軸分別交于點(diǎn)A、C,即可求得A和C的坐標(biāo);根據(jù)題意可知△ACD是等腰三角形,算出AD長即可求得D點(diǎn)坐標(biāo),最后即可求出CD的解析式;
(2)由于△ADP是等腰直角三角形且∠DAP=90°,所以只要AD=AP.
(1)令y=0,則
x+3=0,解得:x=2,
∴A(2,0),
令x=0,則y=3,
∴C(0,3);
由折疊可知:CD=AD,
設(shè)AD=x,則CD=x,BD=3﹣x,
由題意得:(3﹣x)2+22=x2,
解得:x
,
此時(shí)AD
,
∴D(2,
),
設(shè)直線CD為y=kx+3,
把D(2,
)代入得:
2k+3,
解得:k
,
∴直線CD的解析式為y
x+3;
(2)∵A(2,0),D(2,
),
∴AD
.
∵∠DAP=90°,
∴△ADP是等腰直角三角形,
∴AD=AP
,
∴P點(diǎn)的坐標(biāo)是(
,0)或(
,0).
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在線段
上有兩點(diǎn)
,在線段
的異側(cè)有兩點(diǎn)
,滿足
,
,連接
;
![]()
(1)求證:
;
(2)若
,
,當(dāng)
平分
時(shí),求
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),其中點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)將拋物線向下平移h個(gè)單位長度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;
(3)設(shè)點(diǎn)P是拋物線上且在x軸上方的任一點(diǎn),點(diǎn)Q在直線l:x=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司欲將
件產(chǎn)品全部運(yùn)往甲,乙,丙三地銷售(每地均有產(chǎn)品銷售),運(yùn)費(fèi)分別為40元/件,24元/件,7元/件,且要求運(yùn)往乙地的件數(shù)是運(yùn)往甲地件數(shù)的3倍,設(shè)安排
(
為正整數(shù))件產(chǎn)品運(yùn)往甲地.
(1)根據(jù)信息填表:
甲地 | 乙地 | 丙地 | |
產(chǎn)品件數(shù)(件) |
|
| |
運(yùn)費(fèi)(元) |
|
(2)若總運(yùn)費(fèi)為6300元,求
與
的函數(shù)關(guān)系式并求出
的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),則花園面積S的最大值為_____m2.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點(diǎn),過點(diǎn)C的直線交AB的延長線于點(diǎn)D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點(diǎn),AC平分∠BAE.
![]()
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長都是一個(gè)單位長度,在平面直角坐標(biāo)系內(nèi),△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(1,1),C(3,1).
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△A2B2C2;
(3)在(2)的條件下,求線段BC掃過的面積(結(jié)果保留π).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地.兩車行駛的時(shí)間為
,兩車之間的距離為
,圖中的折線表示
與
之間的函數(shù)關(guān)系,根據(jù)圖象解決以下問題:
(1)甲、乙兩地的距離為
.
(2)慢車的速度為
,快車的速度為
;
(3)求當(dāng)
為多少時(shí),兩車之間的距離為
,請通過計(jì)算求出
的值.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com