【題目】如圖,二次函數(shù)y=
x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0),與y軸交于點(diǎn)C.若點(diǎn)P,Q同時(shí)從A點(diǎn)出發(fā),都以每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).![]()
(1)求該二次函數(shù)的解析式及點(diǎn)C的坐標(biāo);
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),這時(shí),在x軸上是否存在點(diǎn)E,使得以A,E,Q為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)求出E點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)P,Q運(yùn)動(dòng)到t秒時(shí),△APQ沿PQ翻折,點(diǎn)A恰好落在拋物線上D點(diǎn)處,請(qǐng)判定此時(shí)四邊形APDQ的形狀,并求出D點(diǎn)坐標(biāo).
【答案】
(1)
解:∵二次函數(shù)y=
x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0),
∴
,
解得
,
∴y=
x2﹣
x﹣4.
∴C(0,﹣4)
(2)
解:方法(1):存在.
如圖1,過(guò)點(diǎn)Q作QD⊥OA于D,此時(shí)QD∥OC,
![]()
∵A(3,0),B(﹣1,0),C(0,﹣4),O(0,0),
∴AB=4,OA=3,OC=4,
∴AC=
=5,
∵當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),AB=4,
∴AQ=4.
∵QD∥OC,
∴
,
∴
,
∴QD=
,AD=
.
①作AQ的垂直平分線,交AO于E,此時(shí)AE=EQ,即△AEQ為等腰三角形,
![]()
設(shè)AE=x,則EQ=x,DE=AD﹣AE=|
﹣x|,
∴在Rt△EDQ中,(
﹣x)2+(
)2=x2,解得 x=
,
∴OA﹣AE=3﹣
=﹣
,
∴E(﹣
,0),
說(shuō)明點(diǎn)E在x軸的負(fù)半軸上;
②以Q為圓心,AQ長(zhǎng)半徑畫圓,交x軸于E,此時(shí)QE=QA=4,
∵ED=AD=
,
∴AE=
,
∴OA﹣AE=3﹣
=﹣
,
∴E(﹣
,0).
③當(dāng)AE=AQ=4時(shí),
(i).當(dāng)E在A點(diǎn)左邊時(shí),
∵OA﹣AE=3﹣4=﹣1,
∴E(﹣1,0).
(ii).當(dāng)E在A點(diǎn)右邊時(shí),
∵OA+AE=3+4=7,
∴E(7,0).
綜上所述,存在滿足條件的點(diǎn)E,點(diǎn)E的坐標(biāo)為(﹣
,0)或(﹣
,0)或(﹣1,0)或(7,0)
方法二:
∵點(diǎn)P、Q同時(shí)從A點(diǎn)出發(fā),都已每秒1個(gè)單位長(zhǎng)度的速度分別沿AB,AC運(yùn)動(dòng).過(guò)點(diǎn)Q作x軸垂線,垂足為H.
∵A(3,0),C(0,4),
∴l(xiāng)AC:y=
x﹣4,
∵點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),點(diǎn)Q停止運(yùn)動(dòng),
∴AP=AQ=4,
∴QH=
,Qy=﹣
,
代入LAC:y=
x﹣4得,Qx=
,則Q(
,﹣
),
∵點(diǎn)E在x軸上,
∴設(shè)E(a,0),
∵A(3,0),Q(
,﹣
),△AEQ為等腰三角形,
∴AE=EQ,AE=AQ,EQ=AQ,
∴(a﹣3)2=(a﹣
)2+(0+
)2,∴a=﹣
,
(a﹣3)2=(3﹣
)2+(0+
)2,∴a1=7,a2=﹣1,
(a﹣
)2+(0+
)2=(3﹣
)2+(0+
)2,∴a1=﹣
,a2=3(舍)
∴點(diǎn)E的坐標(biāo)為(﹣
,0)或(﹣
,0)或(﹣1,0)或(7,0)
(3)
解:方法(1):四邊形APDQ為菱形,D點(diǎn)坐標(biāo)為(﹣
,﹣
).理由如下:
如圖2,D點(diǎn)關(guān)于PQ與A點(diǎn)對(duì)稱,過(guò)點(diǎn)Q作,F(xiàn)Q⊥AP于F,
![]()
∵AP=AQ=t,AP=DP,AQ=DQ,
∴AP=AQ=QD=DP,
∴四邊形AQDP為菱形,
∵FQ∥OC,
∴
,
∴
,
∴AF=
,F(xiàn)Q=
,
∴Q(3﹣
,﹣
),
∵DQ=AP=t,
∴D(3﹣
﹣t,﹣
),
∵D在二次函數(shù)y=
x2﹣
x﹣4上,
∴﹣
=
(3﹣
t)2﹣
(3﹣
t)﹣4,
∴t=
,或t=0(與A重合,舍去),
∴D(﹣
,﹣
)
方法二:
∵P,Q運(yùn)動(dòng)到t秒,
∴設(shè)P(3﹣t,0),Q(3﹣
t,﹣
t),
∴KPQ=
,KPQ=﹣2,
∵AD⊥PQ,
∴KPQKAD=﹣1,
∴KAD=
span> ,
∵A(3,0),
∴l(xiāng)AD:y=
x﹣
,
∵y=
,
∴x1=3(舍),x2=﹣
,
∴D(﹣
,﹣
),
∵DY=QY,即﹣
t=﹣
,t=
,DQ∥AP,DQ=AQ=AP,此時(shí)四邊形APDQ的形狀為菱形.
![]()
![]()
【解析】(1)將A,B點(diǎn)坐標(biāo)代入函數(shù)y=
x2+bx+c中,求得b、c,進(jìn)而可求解析式及C坐標(biāo).(2)等腰三角形有三種情況,AE=EQ,AQ=EQ,AE=AQ.借助垂直平分線,畫圓易得E大致位置,設(shè)邊長(zhǎng)為x,表示其他邊后利用勾股定理易得E坐標(biāo).(3)注意到P,Q運(yùn)動(dòng)速度相同,則△APQ運(yùn)動(dòng)時(shí)都為等腰三角形,又由A、D對(duì)稱,則AP=DP,AQ=DQ,易得四邊形四邊都相等,即菱形.利用菱形對(duì)邊平行且相等等性質(zhì)可用t表示D點(diǎn)坐標(biāo),又D在E函數(shù)上,所以代入即可求t,進(jìn)而D可表示.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,CA平分∠DCB,∠ADC=∠BAC=90°. ![]()
(1)求證:AC2=BCDC;
(2)若BC=5,DC=1,求線段AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B的坐標(biāo)分別為(0,8),(﹣3,0),點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿射線AO方向運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)B出發(fā),以1單位/秒的速度沿射線BO方向運(yùn)動(dòng),以PE為斜邊構(gòu)造Rt△PEC(字母按逆時(shí)針順序),且EC=2PC,拋物線y=﹣2x2+bx+c經(jīng)過(guò)點(diǎn)(0,4),(﹣1,﹣2),設(shè)運(yùn)動(dòng)時(shí)間為t秒.![]()
(1)求該拋物線的表達(dá)式;
(2)當(dāng)t=2時(shí),求點(diǎn)C的坐標(biāo);
(3)①當(dāng)t<3時(shí),求點(diǎn)C的坐標(biāo)(用含t的代數(shù)式表示);
②在運(yùn)動(dòng)過(guò)程中,若點(diǎn)C恰好落在該拋物線上,請(qǐng)直接寫出所有滿足條件的t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在方格紙中,已知格點(diǎn)△ABC和格點(diǎn)O.
(1)畫出△ABC關(guān)于點(diǎn)O對(duì)稱的△A′B′C′;
(2)若以點(diǎn)A、O、C、D為頂點(diǎn)的四邊形是平行四邊形,則點(diǎn)D的坐標(biāo)為__.(寫出所有可能的結(jié)果)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圓⊙O交BC于E點(diǎn),連接DE并延長(zhǎng),交AC于P點(diǎn),交AB延長(zhǎng)線于F. ![]()
(1)求證:CF=DB;
(2)當(dāng)AD=
時(shí),試求E點(diǎn)到CF的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為1cm的等邊三角形ABC沿直線l向右翻動(dòng)(不滑動(dòng)),點(diǎn)B從開(kāi)始到結(jié)束,所經(jīng)過(guò)路徑的長(zhǎng)度為( ) ![]()
A.
cm
B.(2+
π)cm
C.
cm
D.3cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=
x與雙曲線y=
(k>0)交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為(﹣4,﹣2),C為雙曲線y=
(k>0)上一點(diǎn),且在第一象限內(nèi),若△AOC的面積為6,則點(diǎn)C的坐標(biāo)為 . ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是直線AB上的一點(diǎn),OC為任一射線,OD平分∠BOC,OE平分∠AOC.
![]()
(1)指出圖中∠AOD的補(bǔ)角和∠BOE的補(bǔ)角;
(2)若∠BOC=68°,求∠COD和∠EOC的度數(shù);
(3)∠COD與∠EOC具有怎樣的數(shù)量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一只甲蟲在5
5的方格(每一格邊長(zhǎng)為1)上沿著網(wǎng)格線運(yùn)動(dòng),從A處出發(fā)去看望B、C、D處的甲蟲,規(guī)定:向上向右為正,向下向左為負(fù).例如:從A到B記為:
(+1,+3);從C到D 記為:
(+1,-2),其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.
(1)填空:
記為( , ),
記為( , );
(2)若甲蟲的行走路線為:
,請(qǐng)你計(jì)算甲蟲走過(guò)的路程.
(3)若這只甲蟲去Q的行走路線依次為:A→M(+2,+2),M→N(+2,-1),N→P(-2,+3),P→Q(-1,-2),請(qǐng)依次在圖2標(biāo)出點(diǎn)M、N、P、Q的位置.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com