如圖,某種新型導彈從地面發射點L處發射,在初始豎直加速飛行階段,導彈上升的高度y(km)與飛行時間x(s)之間的關系式為y=
x2+
x(0≤x≤10).發射3 s后,導彈到達A點,此時位于與L同一水面的R處雷達站測得AR的距離是2 km,再過3 s后,導彈到達B點.![]()
(1)求發射點L與雷達站R之間的距離;
(2)當導彈到達B點時,求雷達站測得的仰角(即∠BRL)的正切值.
科目:初中數學 來源: 題型:解答題
如圖,已知拋物線y=ax2+2x+c的頂點為A(―1,―4),與y軸交于點B,與x軸負半軸交于點C.![]()
(1)求這條拋物線的函數關系式;
(2)點P為第三象限內拋物線上的一動點,連接BC、PC、PB,求△BCP面積的最大值,并求出此時點P的坐標;
(3)點E為拋物線上的一點,點F為x軸上的一點,若四邊形ABEF為平行四邊形,請直接寫出所有符合條件的點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,△ABC的邊AB在x軸上,∠ABC=90°,AB=BC,OA=1,OB=4,拋物
線
經過A、C兩點.
(1)求拋物線的解析式及其頂點坐標;
(2)如圖①,點P是拋物線上位于x軸下方的一點,點Q與點P關于拋物線的對稱軸對稱,過點P、Q分別向x軸作垂線,垂足為點D、E,記矩形DPQE的周長為d,求d的最大值,并求出使d最大值時點P的坐標;
(3)如圖②,點M是拋物線上位于直線AC下方的一點,過點M作MF⊥AC于點F,連接MC,作MN∥BC交直線AC于點N,若MN將△MFC的面積分成2:3兩部分,請確定M點的坐標.![]()
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,在平面直角坐標系中,點A坐標為(-2,0),點B坐標為(0,2),點E為線段AB上的動點(點E不與點A,B重合),以E為頂點作∠OET=45°,射線ET交線段OB于點F,C為y軸正半軸上一點,且OC=AB,拋物線y=
x2+mx+n的圖象經過A,C兩點.![]()
(1)求此拋物線的函數表達式;
(2)求證:∠BEF=∠AOE;
(3)當△EOF為等腰三角形時,求此時點E的坐標;
(4)在(3)的條件下,當直線EF交x軸于點D,P為(1)中拋物線上一動點,直線PE交x軸于點G,在直線EF上方的拋物線上是否存在一點P,使得△EPF的面積是△EDG面積的(
)倍.若存在,請直接寫出點P坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
平面直角坐標中,對稱軸平行于y軸的拋物線經過原點O,其頂點坐標為(3,
);Rt△ABC的直角邊BC在x軸上,直角頂點C的坐標為(
,0),且BC=5,AC=3(如圖1).![]()
圖1 圖2
(1)求出該拋物線的解析式;
(2)將Rt△ABC沿x軸向右平移,當點A落在(1)中所求拋物線上時Rt△ABC停止移動.D(0,4)為y軸上一點,設點B的橫坐標為m,△DAB的面積為s.
①分別求出點B位于原點左側、右側(含原點O)時,s與m之間的函數關系式,并寫出相應自變量m的取值范圍(可在圖1、圖2中畫出探求);
②當點B位于原點左側時,是否存在實數m,使得△DAB為直角三角形?若存在,直接寫出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,點
是半圓
的半徑
上的動點,作
于
.點
是半圓上位于
左側的點,連結
交線段
于
,且
.![]()
(1) 求證:
是⊙O的切線.
(2) 若⊙O的半徑為
,
,設
.
①求
關于
的函數關系式.
②當
時,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,拋物線
經過點
,且與
軸交于點
、點
,若
.![]()
(1)求此拋物線的解析式;
(2)若拋物線的頂點為
,點
是線段
上一動點(不與點
重合),
,射線
與線段
交于點
,當△
為等腰三角形時,求點
的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
某商店進了一批服裝,每件成本50元,如果按每件60元出售,可銷售800件,如果每件提價5元出售,其銷量將減少100件。
(1)求售價為70元時的銷售量及銷售利潤;
(2)求銷售利潤y(元)與售價x(元)之間的函數關系,并求售價為多少元時獲得最大利潤;
(3)如果商店銷售這批服裝想獲利12000元,那么這批服裝的定價是多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com