【題目】傳統節日“端午節”的早晨,小文媽媽為小文準備了四個粽子作早點:一個棗餡粽,一個肉餡粽,兩個花生餡粽,四個粽子除內部餡料不同外,其它一切均相同.
(1)小文第一次剛好是花生餡粽的概率為____________.
(2)用樹狀圖或列表的方法求出小文吃前兩個粽子都是花生餡粽的概率.
【答案】(1)
;(2)
.
【解析】分析:(1)用花生餡粽的數量除以粽子的總數量即可;
(2)首先分別用A,B,C表示示棗餡粽、肉餡粽、花生餡粽子,然后根據題意列表或畫樹狀圖,再由樹狀圖求得所有等可能的結果與小文吃前兩個粽子剛好都是花生餡粽的情況數,然后利用概率公式求解即可求得答案;
詳解:(1)由題意得,
;
(2)列表或樹狀圖 列出所有等可能結果
A | B | C | C | |
A | (A,B) | (A,C) | (A,C) | |
B | (B,A) | (B,C) | (B,C) | |
C | (C,A) | (C,B) | (C,C) | |
C | (C,A) | (C,B) | (C,C) |
分別用A,B,C表示一個棗餡粽,一個肉餡粽,兩個花生餡粽,列表得:
共有12種等可能的結果,兩個都是花生的有2種情況 ,都是花生的概率為:
.
點睛: 本題主要考查的是概率的知識,解題的關鍵是正確畫出樹狀圖或表格,然后用符合條件的情況數m除以所有等可能發生的情況數n即可,即
.
科目:初中數學 來源: 題型:
【題目】如圖,已知AB=AC,AE=AF,BE與CF交于點D,則對于下列結論:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分線上.其中正確的是( )
![]()
A. ① B. ② C. ①和② D. ①②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了了解我市中學生參加“科普知識”競賽成績的情況,隨機抽查了部分參賽學生的成績,整理并制作出如下的統計表和統計圖,如圖所示.請根據圖表信息解答下列問題:
組別 | 分數段(分) | 頻數 | 頻率 |
A組 | 60≤x<70 | 30 | 0.1 |
B組 | 70≤x<80 | 90 | n |
C組 | 80≤x<90 | m | 0.4 |
D組 | 90≤x<100 | 60 | 0.2 |
(1)在表中:m= ,n= ;
(2)補全頻數分布直方圖;
(3)4個小組每組推薦1人,然后從4人中隨機抽取2人參加頒獎典禮,恰好抽中A、C兩組學生的概率是多少?并列表或畫樹狀圖說明.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在2019年春季環境整治活動中,某社區計劃對面積為
的區域進行綠化.經投標,由甲、乙兩個工程隊來完成,若甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為
區域的綠化時,甲隊比乙隊少用5天.
(1)求甲、乙兩工程隊每天能完成綠化的面積;
(2)設甲工程隊施工
天,乙工程隊施工
天,剛好完成綠化任務,求
關于
的函數關系式;
(3)在(2)的條件下,若甲隊每天綠化費用是0.6萬元,乙隊每天綠化費用為0.25萬元,且甲乙兩隊施工的總天數不超過25天,則如何安排甲乙兩隊施工的天數,使施工總費用最低?并求出最低費用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN與∠AOB互補,若∠MPN在繞點P旋轉的過程中,其兩邊分別與OA、OB相交于M、N兩點,則以下結論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長不變,其中正確的個數為( )
![]()
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AD∥BC,∠A=∠C=50°,線段AD上從左到右依次有兩點E、F(不與A、D重合)
(1)AB與CD是什么位置關系,并說明理由;
(2)觀察比較∠1、∠2、∠3的大小,并說明你的結論的正確性;
(3)若∠FBD:∠CBD=1:4,BE平分∠ABF,且∠1=∠BDC,求∠FBD的度數,判斷BE與AD是何種位置關系?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( )
![]()
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O是直線AB上一點,OC為任一條射線,OD平分∠AOC,OE平分∠BOC.
(1)分別寫出圖中∠AOD和∠AOC的補角
(2)求∠DOE的度數.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為
,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
![]()
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得
≌
即可得
,則可證得
為
的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得
利用勾股定理即可求得
的長,又由OE∥AB,證得
根據相似三角形的對應邊成比例,即可求得
的長,然后利用三角函數的知識,求得
與
的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
![]()
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是
的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為![]()
![]()
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com