【題目】如圖,在△ABC中,∠C=90°,∠A=30°,∠ABC的平分線BD交AC于D,DE⊥AB于點C,若DE=3cm,則AC=( ) ![]()
A.9cm
B.6cm
C.12cm
D.3cm
【答案】A
【解析】解:∵BD是∠ABC的平分線,∠C=90°,DE⊥AB, ∴DC=DE=3cm;
∵∠C=90°,∠A=30°,
∴∠ABC=90°﹣30°=60°,
∵BD是∠ABC的平分線,
∴∠DBE=∠CBD=60°÷2=30°,
∴BD=2DC=2×3=6(cm),
又∵∠A=30°,
∴∠A=∠DBE,
∴△ABD是等腰三角形,
∴AD=BD=6(cm),
∴AC=AD+DC=6+3=9(cm).
故選:A.
【考點精析】關于本題考查的角平分線的性質定理和含30度角的直角三角形,需要了解定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上;在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半才能得出正確答案.
科目:初中數學 來源: 題型:
【題目】若點P是第二象限內的點,且點P到x軸的距離是4,到y軸的距離是3,則點P的坐標是( )
A.(﹣4,3)
B.(4,﹣3)
C.(﹣3,4)
D.(3,﹣4)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點,直線MN經過點C,過點A作直線MN的垂線,垂足為點D,且∠BAC=∠CAD.
(1)求證:直線MN是⊙O的切線;
(2)若CD=3,∠CAD=30°,求⊙O的半徑.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,以AB的中點D為圓心,作圓心角為90°的扇形DEF,點C恰在EF上,設∠BDF=α(0°<α<90°),當α由小到大變化時,圖中陰影部分的面積( )
![]()
A.由小到大 B.由大到小 C.不變 D.先由小到大,后由大到小
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1)所示,∠AOB、∠COD都是直角.![]()
(1)試猜想∠AOD與∠COB在數量上是相等,互余,還是互補的關系.請你用推理的方法說明你的猜想是合理的.
(2)當∠COD繞著點O旋轉到圖(2)所示位置時,你在(1)中的猜想還成立嗎?請你證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com