題目列表(包括答案和解析)
設橢圓
的左、右頂點分別為
,點
在橢圓上且異于
兩點,
為坐標原點.
(Ⅰ)若直線
與
的斜率之積為
,求橢圓的離心率;
(Ⅱ)若
,證明直線
的斜率
滿足![]()
【解析】(1)解:設點P的坐標為
.由題意,有
①
由
,得
,![]()
由
,可得
,代入①并整理得![]()
由于
,故
.于是
,所以橢圓的離心率![]()
(2)證明:(方法一)
依題意,直線OP的方程為
,設點P的坐標為
.
由條件得
消去
并整理得
②
由
,
及
,
得
.
整理得
.而
,于是
,代入②,
整理得![]()
由
,故
,因此
.
所以
.
(方法二)
依題意,直線OP的方程為
,設點P的坐標為
.
由P在橢圓上,有![]()
因為
,
,所以
,即
③
由
,
,得
整理得
.
于是
,代入③,
整理得![]()
解得
,
所以
.
已知m>1,直線
,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點
時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A![]()
、△B![]()
的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數m的取值范圍.[
【解析】第一問中因為直線
經過點
(
,0),所以
=
,得
.又因為m>1,所以
,故直線的方程為![]()
第二問中設
,由
,消去x,得
,
則由
,知
<8,且有![]()
由題意知O為![]()
的中點.由
可知
從而
,設M是GH的中點,則M(
).
由題意可知,2|MO|<|GH|,得到范圍
過拋物線![]()
![]()
的對稱軸上的定點
,作直線
與拋物線相交于
兩點.
(I)試證明
兩點的縱坐標之積為定值;
(II)若點
是定直線
上的任一點,試探索三條直線
的斜率之間的關系,并給出證明.
【解析】本題主要考查拋物線與直線的位置關系以及發現問題和解決問題的能力.
(1)中證明:設
下證之:設直線AB的方程為: x=ty+m與y2=2px聯立得消去x得y2=2pty-2pm=0,由韋達定理得
![]()
(2)中:因為三條直線AN,MN,BN的斜率成等差數列,下證之
設點N(-m,n),則直線AN的斜率KAN=
,直線BN的斜率KBN=![]()
![]()
KAN+KBN=
+![]()
本題主要考查拋物線與直線的位置關系以及發現問題和解決問題的能力.
設雙曲線
的兩個焦點分別為
、
,離心率為2.
(1)求雙曲線的漸近線方程;
(2)過點
能否作出直線
,使
與雙曲線
交于
、
兩點,且
,若存在,求出直線方程,若不存在,說明理由.
【解析】(1)根據離心率先求出a2的值,然后令雙曲線等于右側的1為0,解此方程可得雙曲線的漸近線方程.
(2)設直線l的方程為
,然后直線方程與雙曲線方程聯立,消去y,得到關于x的一元二次方程,利用韋達定理
表示此條件,得到關于k的方程,解出k的值,然后驗證判別式是否大于零即可.
設橢圓
(常數
)的左右焦點分別為
,
是直線
上的兩個動點,
.
(1)若
,求
的值;
(2)求
的最小值.
![]()
【解析】第一問中解:設
,
則![]()
由
得
由
,得
②
![]()
第二問易求橢圓
的標準方程為:![]()
,
所以,當且僅當
或
時,
取最小值
.
解:設
,
……………………1分
則
,由
得
①……2分
(1)由
,得
② ……………1分
③ ………………………1分
由①、②、③三式,消去
,并求得
.
………………………3分
(2)解法一:易求橢圓
的標準方程為:
.………………2分
, ……4分
所以,當且僅當
或
時,
取最小值
.…2分
解法二:
,
………………4分
所以,當且僅當
或
時,
取最小值![]()
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com