【題目】如圖,在四棱錐
中,![]()
,底面
是矩形,
,
,
分別是
,
的中點(diǎn).
![]()
(1)求證:
;
(2)已知點(diǎn)
是
的中點(diǎn),點(diǎn)
是
上一動(dòng)點(diǎn),當(dāng)
為何值時(shí),平面
?
【答案】(1)證明見(jiàn)解析;(2)當(dāng)
時(shí),平面
.
【解析】
試題分析:(1)根據(jù)線面垂直的判定定理,若證
平面
,則須證
垂直于平面
內(nèi)的兩條相交直線.根據(jù)題意,易證
,
,又
,從而問(wèn)題可得證;(2)根據(jù)題意,過(guò)點(diǎn)
作
,交
于
,連接
,因?yàn)?/span>
是
的中點(diǎn),所以易證平面
平面
,即平面
平面
,又在矩形
中,易求得
,當(dāng)
是
與
的交點(diǎn)時(shí),即
時(shí),平面
.
試題解析:(1)證明:∵
,底面
是矩形,
∴
,又
,∴
,………………2分
∴
.………………………………………………4分
∵
,
為
的中點(diǎn),∴
.………………………………5分
∵
,∴
.……………………………………6分
(2)過(guò)點(diǎn)
作
,交
于
,連接
,………………………………7分
![]()
∵∴
,……………………………………8分
∵
,∴
,……………………………………9分
∴當(dāng)
是
與
的交點(diǎn)時(shí),平面
,…………………………………………10分
在矩形
中,求得
.……………………………………12分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l1:x+2y﹣1=0,l2:2x+ny+5=0,l3:mx+3y+1=0,若l1∥l2且l1⊥l3,則m+n的值為( )
A.﹣10B.﹣2C.2D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)復(fù)數(shù)z=2m+(4-m2)i,當(dāng)實(shí)數(shù)m取何值時(shí),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn):
(1)位于虛軸上?
(2)位于一、三象限?
(3)位于以原點(diǎn)為圓心,以4為半徑的圓上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于
的不等式
的解集為
.
(1)若
是從
四個(gè)數(shù)中任取的一個(gè)數(shù),
是從
三個(gè)數(shù)中任取的一個(gè)數(shù),求
不為空集的概率;
(2)若
是從區(qū)間
上任取的一個(gè)數(shù),
是從區(qū)間
上任取的一個(gè)數(shù),求
不為空集的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若定義在D上的函數(shù)f(x)滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有-M<f(x)<M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界。
(Ⅰ)判斷函數(shù)f(x)=
-2x+2,x∈[0,2]是否是有界函數(shù),請(qǐng)說(shuō)明理由;
(Ⅱ)若函數(shù)f(x)=1+
+
,x∈[0,+∞)是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校學(xué)生的視力情況,現(xiàn)采用隨機(jī)抽樣的方式從該校的
兩班中各抽5名學(xué)生進(jìn)行視力檢測(cè),檢測(cè)的數(shù)據(jù)如下:
班5名學(xué)生的視力檢測(cè)結(jié)果是:
.
班5名學(xué)生的視力檢測(cè)結(jié)果是:
.
(1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,哪個(gè)班的學(xué)生視力較好?并計(jì)算
班的5名學(xué)生視力的方差;
(2)現(xiàn)從
班上述5名學(xué)生中隨機(jī)選取2名,求這2名學(xué)生中至少有1名學(xué)生的視力低于
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,以
為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線
相切.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)
,和面內(nèi)一點(diǎn)
,過(guò)點(diǎn)
任作直線
與橢圓
相交于
兩點(diǎn),設(shè)直線
的斜率分別為
,若
,試求
滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,
底面
,底面
是直角梯形,
.
![]()
(1)在
上確定一點(diǎn)
,使得
平面
,并求
的值;
(2)在(1)條件下,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f (x)=lg(ax2+2x+1) .
(1)若函數(shù)f (x)的定義域?yàn)?/span>R,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f (x)的值域?yàn)?/span>R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com