【題目】數(shù)列
中,
,
.
(1)求證:存在
的一次函數(shù)
,使得
成公比為2的等比數(shù)列;
(2)求
的通項(xiàng)公式;
(3)令
,求證:
.
【答案】(1)證明見解析;(2)
;(3)證明見解析.
【解析】
(1)根據(jù)題意,設(shè)
滿足條件,由于
成公比為2的等比數(shù)列,根據(jù)等比數(shù)列的定義,得出
,利用待定系數(shù)法求出
和
,即可得出結(jié)論;
(2)由(1)知
是首項(xiàng)為
,公比為2的等比數(shù)列,由等比數(shù)列的通項(xiàng)公式得出
,即可求出
的通項(xiàng)公式;
(3)先求出
,要證
,即證
,根據(jù)放縮法得出,當(dāng)
時(shí),
,再利用裂項(xiàng)相消法求和,即可證明不等式.
解:(1)證明:設(shè)
滿足條件,
由于
成公比為2的等比數(shù)列,
則
,
即
,
由
,得
,
解得:
,
,
,
存在
,使
成公比為2的等比數(shù)列.
(2)由(1)知
是首項(xiàng)為
,公比為2的等比數(shù)列,
則
,
.
(3)證明:
,即
,
要證
,即證
,
當(dāng)
時(shí),
,
,
即
,
所以
,
即
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)設(shè)函數(shù)
.當(dāng)
時(shí),若函數(shù)
在
上為增函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)單位有職工500人,其中不到35歲的有125人,35歲至50歲的有280人,50歲以上的有95人.為了了解這個(gè)單位職工與身體狀態(tài)有關(guān)的某項(xiàng)指標(biāo),要從中抽取100名職工作為樣本,應(yīng)該怎樣抽取?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某省各景點(diǎn)在大眾中的熟知度,隨機(jī)對(duì)15~65歲的人群抽樣了
人,回答問題“某省有哪幾個(gè)著名的旅游景點(diǎn)?”統(tǒng)計(jì)結(jié)果如下圖表
組號(hào) | 分組 | 回答正確 的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第1組 | [15,25) |
| 0.5 |
第2組 | [25,35) | 18 |
|
第3組 | [35,45) |
| 0.9 |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 |
|
![]()
(1)分別求出
的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?
(3)在(2)抽取的6人中隨機(jī)抽取2人,求所抽取的人中恰好沒有第3組人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班50位學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]
![]()
(Ⅰ)求圖中
的值,并估計(jì)該班期中考試數(shù)學(xué)成績的眾數(shù);
(Ⅱ)從成績不低于90分的學(xué)生和成績低于50分的學(xué)生中隨機(jī)選取2人,求這2人成績均不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓
的離心率
,左焦點(diǎn)為
,右頂點(diǎn)為
,過點(diǎn)
的直線交橢圓于
兩點(diǎn),若直線
垂直于
軸時(shí),有
.
(1)求橢圓的方程;
(2)設(shè)直線
:
上兩點(diǎn)
,
關(guān)于
軸對(duì)稱,直線
與橢圓相交于點(diǎn)
(
異于點(diǎn)
),直線
與
軸相交于點(diǎn)
.若
的面積為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)當(dāng)a=0時(shí),f(x)≥h(x)在(1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時(shí),若函數(shù)k(x)=f(x)-h(x)在區(qū)間(1,3)上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
是
的極值點(diǎn), 求函數(shù)
的單調(diào)性;
(2)若
時(shí),
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)
時(shí),求
在
上的單調(diào)區(qū)間;
(2)
且
,
均恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com