(本小題滿分13分)
正△
的邊長為4,
是
邊上的高,
分別是
和
邊的中點,現將△
沿
翻折成直二面角
.
![]()
![]()
(1)試判斷直線
與平面
的位置關系,并說明理由;
(2)求二面角
的余弦值;
(3)在線段
上是否存在一點
,使
?證明你的結論.
(1)略
(2)![]()
(3)在線段BC上存在點P使AP⊥DE
【解析】(本小題滿分13分)
解:法一:(1)如圖:在△ABC中,由E、F分別是AC、BC中點,
得EF//AB,又AB
平面DEF,EF
平面DEF.
![]()
∴AB∥平面DEF.
(2)∵AD⊥CD,BD⊥CD
∴∠ADB是二面角A—CD—B的平面角
∴AD⊥BD ∴AD⊥平面BCD
取CD的中點M,這時EM∥AD ∴EM⊥平面BCD
過M作MN⊥DF于點N,連結EN,則EN⊥DF
∴∠MNE是二面角E—DF—C的平面角…………6分
在Rt△EMN中,EM=1,MN=![]()
∴tan∠MNE=
,cos∠MNE=
………………………8分
(3)在線段BC上存在點P,使AP⊥DE……………………10分
證明如下:在線段BC上取點P。使
,過P作PQ⊥CD與點Q,
![]()
∴PQ⊥平面ACD ∵
在等邊△ADE中,∠DAQ=30°
∴AQ⊥DE∴AP⊥DE…………………………13分
法二:(2)以點D為坐標原點,直線DB、DC為x軸、y軸,建立空間直角坐標系,
則A(0,0,2)B(2,0,0)C(0,
……4分
平面CDF的法向量為
設平面EDF的法向量為![]()
則
即![]()
所以二面角E—DF—C的余弦值為
…8分
(3)在平面坐標系xDy中,直線BC的方程為![]()
設![]()
…………12分
所以在線段BC上存在點P,使AP⊥DE ………………14分
另解:設![]()
又
…………………12分
![]()
把![]()
所以在線段BC上存在點P使AP⊥DE …………….13分
科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數![]()
.
(1)求函數
的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數
在區間
上的圖象.
(3)設0<x<
,且方程
有兩個不同的實數根,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題
(本小題滿分13分)已知定義域為
的函數
是奇函數.
(1)求
的值;(2)判斷函數
的單調性;
(3)若對任意的
,不等式恒成立
,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱
的所有棱長都為2,
為
的中點。
(Ⅰ)求證:
∥平面
;
(Ⅱ)求異面直線
與
所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題
(本小題滿分13分)
已知
為銳角,且
,函數
,數列{
}的首項
.
(1) 求函數
的表達式;
(2)在
中,若
A=2
,
,BC=2,求
的面積
(3) 求數列
的前
項和![]()
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com