【題目】現(xiàn)有一長為100碼,寬為80碼,球門寬為8碼的矩形足球運(yùn)動場地,如圖所示,其中
是足球場地邊線所在的直線,球門
處于所在直線的正中間位置,足球運(yùn)動員(將其看做點(diǎn)
)在運(yùn)動場上觀察球門的角
稱為視角.
![]()
(1)當(dāng)運(yùn)動員帶球沿著邊線
奔跑時(shí),設(shè)
到底線的距離為
碼,試求當(dāng)
為何值時(shí)
最大;
(2)理論研究和實(shí)踐經(jīng)驗(yàn)表明:張角
越大,射門命中率就越大.現(xiàn)假定運(yùn)動員在球場都是沿著垂直于底線的方向向底線運(yùn)球,運(yùn)動到視角最大的位置即為最佳射門點(diǎn),以
的中點(diǎn)為原點(diǎn)建立如圖所示的直角坐標(biāo)系,求在球場區(qū)域
內(nèi)射門到球門
的最佳射門點(diǎn)的軌跡.
【答案】(1)
(2)見解析
【解析】
(1)要求得
最大,只需
最大,利用
,將其展開后表示為關(guān)于x的函數(shù),利用基本不等式求得最值.
(2)設(shè)點(diǎn)
,其中
,
,將
表示為關(guān)于x、y的函數(shù),利用基本不等式求得取到最值時(shí)的條件,得到關(guān)于x,y的方程即為點(diǎn)的軌跡..
(1)![]()
,
當(dāng)且僅當(dāng)
,即
時(shí),
取得最大值
,
又
在
上單調(diào)遞增,∴當(dāng)
取得最大值時(shí),
最大,
∴
,
取得最大值
;
(2)過點(diǎn)
作
于
,設(shè)點(diǎn)
,其中
,
,
∴![]()
,
當(dāng)且僅當(dāng)
,即
時(shí),
取得最大值
,
此時(shí)軌跡方程為
,
其表示焦點(diǎn)為
,實(shí)軸長為8的等軸雙曲線在
的一部分.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費(fèi)和年銷售量數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)年宣傳費(fèi)x(萬元)和年銷售量y(單位:t)具有線性相關(guān)關(guān)系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.
![]()
(1)根據(jù)表中數(shù)據(jù)建立年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程;
(2)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為
,根據(jù)(1)中的結(jié)果回答下列問題:
①當(dāng)年宣傳費(fèi)為10萬元時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?
②估算該公司應(yīng)該投入多少宣傳費(fèi),才能使得年利潤與年宣傳費(fèi)的比值最大.
附:回歸方程
中的斜率和截距的最小二乘估計(jì)公式分別為
![]()
參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求關(guān)于
的不等式
的解集;
(2)若
,求關(guān)于
的不等式
的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)
x2﹣xlnx,g(x)=(m﹣x)lnx+(1﹣m)x(m<0).
(1)討論函數(shù)f′(x)的單調(diào)性;
(2)求函數(shù)F(x)=f(x)﹣g(x)在區(qū)間[1,+∞)上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對任意
,函數(shù)
滿足:
,
,數(shù)列
的前15項(xiàng)和為
,數(shù)列
滿足
,若數(shù)列
的前
項(xiàng)和的極限存在,則
________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓
,點(diǎn)
為其右焦點(diǎn),過點(diǎn)
的直線與橢圓
相交于點(diǎn)
,
.
![]()
(1)當(dāng)點(diǎn)
在橢圓
上運(yùn)動時(shí),求線段
的中點(diǎn)
的軌跡方程;
(2)如圖1,點(diǎn)
的坐標(biāo)為
,若點(diǎn)
是點(diǎn)
關(guān)于
軸的對稱點(diǎn),求證:點(diǎn)
,
,
共線;
(3)如圖2,點(diǎn)
是直線
上的任意一點(diǎn),設(shè)直線
,
,
的斜率分別為
,
,
,求證
,
,
成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高三年級有500名學(xué)生,為了了解數(shù)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機(jī)抽出若干名學(xué)生在一次測試中的數(shù)學(xué)成績,制成如下頻率分布表:
分組 | 頻數(shù) | 頻率 |
|
|
|
|
| |
|
| |
| 12 |
|
|
| |
| 4 |
|
|
| |
合計(jì) |
|
根據(jù)上面圖表,求
處的數(shù)值
在所給的坐標(biāo)系中畫出
的頻率分布直方圖;
根據(jù)題中信息估計(jì)總體平均數(shù),并估計(jì)總體落在
中的概率.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體
中,點(diǎn)
是對角線
上的動點(diǎn)(點(diǎn)
與
不重合),則下列結(jié)論正確的是__________
![]()
①存在點(diǎn)
,使得平面
平面
;
②存在點(diǎn)
,使得平面
平面
;
③
的面積可能等于
;
④若
分別是
在平面
與平面
的正投影的面積,則存在點(diǎn)
,使得![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
上的動點(diǎn)
到點(diǎn)
的距離減去
到直線
的距離等于1.
(1)求曲線
的方程;
(2)若直線
與曲線
交于
,
兩點(diǎn),求證:直線
與直線
的傾斜角互補(bǔ).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com