(1)方法一 對函數(shù)f(x)求導(dǎo),f′(x)=

·

.
令f′(x)=0,得x=1或x=-1.
當(dāng)x∈(0,1)時,f′(x)>0,f(x)在(0,1)上單調(diào)遞增;
當(dāng)x∈(1,2)時,f′(x)<0,f(x)在(1,2)上單調(diào)遞減.又f(0)=0,f(1)=

,f(2)=

,
∴當(dāng)x∈[0,2]時,f(x)的值域是

.
方法二 當(dāng)x=0時,f(x)=0;
當(dāng)x∈(0,2]時,f(x)>0且
f(x)=

·

≤

·

=

,
當(dāng)且僅當(dāng)x=

,即x=1時,“=”成立.
∴當(dāng)x∈[0,2]時,f(x)的值域是

.
(2)設(shè)函數(shù)g(x)在[0,2]上的值域是A.
∵對任意x
1∈[0,2],總存在x
0∈[0,2],
使f(x
1)-g(x
0)=0,∴

A.
對函數(shù)g(x)求導(dǎo),g′(x)=ax
2-a
2.
①當(dāng)x∈(0,2),a<0時,g′(x)<0,
∴函數(shù)g(x)在(0,2)上單調(diào)遞減.
∵g(0)=0,g(2)=

a-2a
2<0,
∴當(dāng)x∈[0,2]時,不滿足

A;
②當(dāng)a>0時,g′(x)=a(x-

)(x+

).
令g′(x)=0,得x=

或x=-

(舍去).
(ⅰ)當(dāng)x∈[0,2],0<

<2時,列表:
∵g(0)=0,g(

)<0,
又∵

A,∴g(2)=

≥

.
解得

≤a≤1.
(ⅱ)當(dāng)x∈(0,2),

≥2時,g′(x)<0,
∴函數(shù)在(0,2)上單調(diào)遞減,
∵g(0)=0,g(2)=

<0,
∴當(dāng)x∈[0,2]時,不滿足

A.
綜上,實數(shù)a的取值范圍是

.